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Middle Cerebral Artery

Rhoton AL: Neurosurgery 2002; 51[Suppl 1]:53-120 
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M1 Segment of the MCA

Rhoton AL: Neurosurgery 2002; 51[Suppl 1]:53-120 
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Distribution of the MCA

Rhoton AL: Neurosurgery 2002; 51[Suppl 1]:53-120 

Aneurysm sites
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Cerebral Vasospasm
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Mainstay of Therapy

‘Triple H’ therapy
• Hypertension – increase flow through pressure
• Hemodilution – increase flow through viscosity
• Hypervolemia – supports goals of above two

Potential problem
• Hemodilution decreases oxygen content
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Complexity of the Problem

Blood viscosity is a non-linear, complex function of 
hematocrit (fraction of blood volume occupied by 
red cells, normal 0.45, target 0.30)
Oxygen content is a linear function of hemoglobin 
concentration (and saturation, here assumed = 1)
Blood is a non-Newtonian fluid
The MCA geometry may be additional confounding 
variable
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M1 Segment Geometry

CAD Import Module, SolidWorks Live Interface

SolidWorks Office Professional 2008
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Outlet
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Example Stenotic Geometries
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Unstructured Mesh

70,000 – 100,000 elements
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Experimental Values of Blood Viscosity

Jung J: J Biomech 2006; 39:2064-73
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Carreau-Yasuda Viscosity Model
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Volume-Averaged Blood Density

blood rbc rbc plasma plasmaρ ε ρ ε ρ= +
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Single Phase Governing Equations
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Two Phase Mixture Model (Eulerian-Eularian)
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Two Phase Slip Model (Schiller-Naumann)
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Calculation of Oxygen Delivery

2 2

2

D C

C hct MCHC 1.34 mL/g
MCHC 33 g/dL
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∫u

hct = hematocrit (single phase) or phid (two phase)

MCHC = mean corpuscular hemoglobin concentration
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Sample Visualizations, 0.5 Stenosis

Mixture Velocity Dynamic Viscosity Mixture Density

hct = 0.6

hct = 0.2
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Single Phase vs Two Phase Results
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Effect of Hematocrit with Mild Stenosis
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Moderate to Severe Stenoses
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Very Severe Stenoses
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Stenosis 0.8
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Stenosis 0.9
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Conclusions

In this model, single phase and two phase 
approaches yielded comparable results
In mild to critical stenoses, where therapy may 
impact outcome, hemodilution may worsen oxygen 
delivery and contribute to ischemia
In very severe stenoses (0.9 and above), 
hemodilution may improve oxygen delivery, but 
blood flow is so low (3 orders of magnitude lower) 
that it would not likely have any clinical impact
These results assume no change in downstream 
impedance to blood flow, but are likely still clinically 
generalizable to the problem at hand
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