Presented at the COMSOL Conference 2008 Boston

Health Sciences Center

Hemodynamic Therapy of Middle Cerebral Artery Vasospasm Guided by a Multiphase Model of Oxygen Transport

Steven A. Conrad^{1,3}, Prashant Chittiboina², Bharat Guthikonda²

¹Division of Critical Care Medicine, and ²Department of Neurosurgery, LSU Health Sciences Center – Shreveport

> ³Department of Biomedical Engineering Louisiana Tech University, Ruston, LA

Middle Cerebral Artery

Rhoton AL: Neurosurgery 2002; 51[Suppl 1]:53-120

M1 Segment of the MCA

Rhoton AL: Neurosurgery 2002; 51[Suppl 1]:53-120

LSU

Health Sciences Center

Rhoton AL: Neurosurgery 2002; 51[Suppl 1]:53-120

LSU

Health Sciences Center

Cerebral Vasospasm

NOTSOE

CONFEREN

in Nor

Mainstay of Therapy

- 'Triple H' therapy
 - Hypertension increase flow through pressure
 - Hemodilution increase flow through viscosity
 - Hypervolemia supports goals of above two
- Potential problem
 - Hemodilution decreases oxygen content

$$DO_2 = CO_2 \cdot \dot{Q}$$

7

- Blood viscosity is a non-linear, complex function of hematocrit (fraction of blood volume occupied by red cells, normal 0.45, target 0.30)
- Oxygen content is a linear function of hemoglobin concentration (and saturation, here assumed = 1)
- Blood is a non-Newtonian fluid
- The MCA geometry may be additional confounding variable

M1 Segment Geometry

Example Stenotic Geometries

Unstructured Mesh

Experimental Values of Blood Viscosity

2008

CONFERENCE

COMSOI

NOTZOB

Carreau-Yasuda Viscosity Model

$$\eta = m \left[1 + \left(\lambda \dot{\gamma} \right)^2 \right]^{\frac{n-1}{2}}$$

$$m = 122.28\varepsilon_{rbc}^{3} - 51.213\varepsilon_{rbc}^{2} + 16.30\varepsilon_{rbc} + 1$$
$$n = 0.8092\varepsilon_{rbc}^{3} - 0.8246\varepsilon_{rbc}^{3} - 0.3503\varepsilon_{rbc} + 1$$

Jung J: J Biomech 2006; 39:2064-73

Volume-Averaged Blood Density

$\rho_{blood} = \varepsilon_{rbc} \rho_{rbc} + \varepsilon_{plasma} \rho_{plasma}$

Single Phase Governing Equations

$$\rho(\mathbf{u} \cdot \nabla \mathbf{u}) = -\nabla p \mathbf{I} + \nabla \left(\eta \left[\nabla \mathbf{u} + \left(\nabla \mathbf{u} \right)^T \right] \right) + \mathbf{F}$$
$$\nabla \mathbf{u} = 0$$

COMSOL Incompressible Navier-Stokes Application Mode (ChemEng)

NOTSOB

DSMDD

CONFERENC

Two Phase Mixture Model (Eulerian-Eularian)

$$\rho(\mathbf{u} \cdot \nabla \mathbf{u}) = \nabla p - \nabla \left(\rho \theta_d \rho_d / \rho \left(1 - \theta_d \rho_d / \rho\right) \mathbf{u}_{slip} \mathbf{u}_{slip}\right) + \nabla \left(\eta \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^T\right]\right) + \rho \mathbf{g} + \mathbf{F} \left(\rho_c - \rho_d\right) \left[\nabla \left(\theta_d \left(1 - \theta_d \rho_d / \rho\right) \mathbf{u}_{slip}\right) + m_{dc} \rho_d\right] + \rho_c \left(\nabla \mathbf{u}\right) = 0 \nabla \left[\theta_d \mathbf{u} + \theta_d \left(1 - \theta_d \rho_d / \rho\right) \mathbf{u}_{slip}\right] = m_{dc} / \rho_d$$

COMSOL Multiphase Mixture Model Application Mode (ChemEng) Liquid dispersed and continuous phases

Two Phase Slip Model (Schiller-Naumann)

CONFERENCE BOSTON

$$\frac{3}{4}C_{d} \frac{\rho_{c} \left| \mathbf{u}_{slip} \right| \mathbf{u}_{slip}}{d_{d}} = -\frac{\rho - \rho_{d}}{\rho \nabla p}$$

$$C_{d} = \begin{vmatrix} \frac{24}{\text{Re}_{p}} \left[1 + 0.15 \,\text{Re}_{p}^{0.687} \right] & \text{Re}_{p} < 1000 \\ 0.44 & \text{Re}_{p} \ge 1000 \end{vmatrix}$$

$$\text{Re}_{p} = \frac{d_{d}\rho_{c} \left| \mathbf{u}_{slip} \right|}{\eta}$$

Mixture viscosity model same as for single phase flow (Carreau-Yasuda viscosity model based on hematocrit)

Calculation of Oxygen Delivery

 $DO_2 = \int \mathbf{u} \cdot CO_2$ $CO_2 = hct \cdot MCHC \cdot 1.34 \text{ mL/g}$ MCHC = 33 g/dL

hct = hematocrit (single phase) or *phid* (two phase)

MCHC = mean corpuscular hemoglobin concentration

IOSMOD

CONFERENC

Sample Visualizations, 0.5 Stenosis

Single Phase vs Two Phase Results

Effect of Hematocrit with Mild Stenosis

Moderate to Severe Stenoses

Very Severe Stenoses

LSU

Health Sciences Center

Stenosis 0.9

COMSOL

.SL

25

Conclusions

- In this model, single phase and two phase approaches yielded comparable results
- In mild to critical stenoses, where therapy may impact outcome, hemodilution may worsen oxygen delivery and contribute to ischemia
- In very severe stenoses (0.9 and above), hemodilution may improve oxygen delivery, but blood flow is so low (3 orders of magnitude lower) that it would not likely have any clinical impact
- These results assume no change in downstream impedance to blood flow, but are likely still clinically generalizable to the problem at hand