Analyzing a Malfunctioning Clarifier with the Mixture Model

Arie de Niet

Outline

- Problem Description
- Clarifier Physics
- Setup of Numerical Experiments
- Results
- Discussion

Problem description

- Wastewater treatment: remove nitrogen and phosporous in water with "active sludge"
- Secondary clarifier: separates water and sludge, water exits plant, sludge is re-used

Problem description

- Wastewater treatment: remove nitrogen and phosporous in water with "active sludge"
- Secondary clarifier: separates water and sludge, water exits plant, sludge is re-used
- Donut-shaped tank
- Problem: bad separation of sludge and water

Problem description

- Wastewater treatment: remove nitrogen and phosporous in water with "active sludge"
- Secondary clarifier: separates water and sludge, water exits plant, sludge is re-used
- Donut-shaped tank
- Problem: bad separation of sludge and water
- Approach: COMSOL
 used to detect causes
 and test effect of measures

Clarifier Physics

Sludge in view of wastewater engineers:

- grams dry solids per liter (DS)
- sludge volume index (SVI)

Clarifier Physics

Sludge in view of wastewater engineers:

- grams dry solids per liter (DS)
- sludge volume index (SVI)

Sludge in view of COMSOL's mixture model:

- particle or fluid?
- volume fraction (φ)

Clarifier Physics

Sludge in view of wastewater engineers:

- grams dry solids per liter (DS)
- sludge volume index (SVI)

Sludge in view of COMSOL's mixture model:

- particle or fluid?
- volume fraction (φ)

Translation:

```
\phi_{in} = SVI \cdot DS_{in}

\approx 60 [ml/g \ ds] \cdot 2.5 [g \ ds/l]

= 0.09 [1].
```

- Mixture model
- Geometry with 2D axial symmetry
- Transient simulation

- Mixture model
- Geometry with 2D axial symmetry
- Transient simulation
- Schiller-Naumann model for slip velocity
- Volume average viscosity

- Mixture model
- Geometry with 2D axial symmetry
- Transient simulation
- Schiller-Naumann model for slip velocity
- Volume average viscosity
- Literature values for uncertain quantities

$$\rho = 1,025 \text{ kg/m}^3$$

$$v = 1e-3$$

$$d = 0.8 \, \text{mm}$$

Geometry:

Geometry:

• Density (ρ) , flock diameter (d), position of plates changed

Results: short circuit flow

• Flock diameter: 0.8 mm (top), 1.0 mm (bottom)

Results: transition of state

• Grams dry solids per liter (DS) at several places in the tank during simulation for d = 0.8 mm

Results: accumulation of sludge

Detail near return-sludge conduit

Results: effect of measures

- Not effective: changes in position or slope of deflection plates
- Effective: slight increase in flock diameter or sludge density
- Sludge properties like diameter and density can be changed by injection of chemicals!

Discussion

CFD simulation of the malfunctioning clarifier support the following conclusions:

- bad design is the main cause of malfunction;
- performance can be improved by adding chemicals that increase flock diameter or density;

