Parameter Optimization for FEM-based modeling of singlet oxygen during PDT

Timothy C. Zhu and Ken Wang University of Pennsylvania, Philadelphia, PA

Objective

 To determine the photochemical parameters necessary for singlet oxygen modeling during PDT using parameters obtained from a microscopic model.

Introduction

- Photodynamic therapy is a new cancer treatment modality using the photochemical reaction of a photosensitizing drug (S), light (\$\phi\$), and oxygen (\$^2\cup).
- Components of PDT
 - Photosensitizer
 - Light
 - Oxygen

Type II photodyanmic interaction

Singlet oxygen (¹O₂) is believed to be the major cytotoxic agent during type II photodynamic therapy (PDT), and the reaction between ¹O₂ and tumor cells define the treatment efficacy at the most fundamental level.

Jablonski Diagram – Type II

Formulation of the macroscopic

problem

Assuming $d[S_1]/dt = 0$, $d[^1O_2]/dt = 0$, d[T]/dt = 0.

$\frac{d[S_0]}{dt} + \gamma \left(\frac{[{}^{3}O_2]}{[{}^{3}O_2] + \beta}\right) \left(\frac{\kappa}{1 + \alpha}\right) \eta \phi \left[S_0\right]^2 = 0$

$$\frac{d[{}^{3}O_{2}]}{dt} + S_{\Delta}\gamma \frac{[{}^{3}O_{2}]}{[{}^{3}O_{2}] + \beta} \frac{\alpha}{1 + \alpha} \eta \phi [S_{0}] = P$$

$$[{}^{1}O_{2}] = \gamma \frac{[{}^{3}O_{2}]}{[{}^{3}O_{2}] + \beta} \cdot \frac{\kappa}{1 + \alpha} \cdot \eta \phi[S_{0}]$$

$$[S_1] = \frac{\gamma}{k_5} \eta \phi[S_0]$$

$$[T] = \frac{\gamma}{[{}^{3}O_{2}] + \beta} \eta \phi[S_{0}]$$

$$[S_1] = \frac{\gamma}{k_5} \eta \phi[S_0]$$

$$T] = \frac{\gamma}{[^{3}O_{2}] + \beta} \eta \phi[S_{0}]$$

$$\nabla (1/3\mu'_{s})\nabla \phi - \mu_{a}\phi = S \qquad [^{1}O_{2}]_{i}$$
Boundary Conditions
$$-\begin{bmatrix} u_{1} + 2A\mathbf{n} \cdot \nabla(\frac{1}{3\mu'_{s}})\overline{u_{1}} = 0 \\ \nabla [S_{0}] = 0 \\ \nabla [^{3}O_{2}] = 0 \end{bmatrix}$$

Sym.	Definition	Values
k_5	Rate of S ₁ to T	$8.0 \times 10^{7} 1/s$
S_{Λ}	Fraction $[{}^{1}O_{2}]$ from	0.5
_	reaction [T] and [³ O ₂]	
α	$k_7[A]/k_6$	2158
β	k_4/k_2	12.1 µM
γ	$k_{5}/(k_{5}+k_{3})$	0.8 1/s
κ	k_{1}/k_{6}	0.12 1/μ M
η	$\epsilon/h\nu$	$0.188 1/s \cdot cm^2/mW$
Р	Oxygen Perfusion rate	$1.66 \times 10^{-2} \ \mu M/s$
$[S_0]_i$	PS concentration	$17 \ \mu M \ (= 10 \text{mg/kg Photofrin } invision)$
$[{}^{3}O_{2}]_{i}$	Init. Con.	83 µM
$[\mathbf{S}_1]_i$	Init. Con.	0 μΜ
$[T]_i$	Init. Con.	0 μΜ
$[^{1}O_{2}]_{i}$	Init. Con.	0 μΜ

$$= fS_{\Delta}\gamma \frac{\alpha}{1+\alpha} \int_{0}^{t} \frac{[^{3}O_{2}]}{[^{3}O_{2}]+\beta} \cdot \dot{D}dt$$

Physics Settings in COMSOL – macroscopic model

Governing Equations

$$\begin{cases}
\frac{du_2}{dt} + \left(\gamma\eta \cdot \frac{u_3}{u_3 + \beta} \cdot u_1 \cdot u_2 \cdot \frac{\kappa}{1 + \alpha}\right)u_2 = 0 \\
\frac{du_3}{dt} + \left(S_{\Delta}\gamma\eta \cdot \frac{u_1 \cdot u_2}{u_3 + \beta} \cdot \frac{\alpha}{1 + \alpha}\right)u_3 = P \\
\frac{du_4}{dt} = S_{\Delta}\gamma\eta \cdot \frac{u_1 \cdot u_2 \cdot u_3}{u_3 + \beta} \cdot \frac{\alpha}{1 + \alpha} \\
\frac{u_1 + 2A\mathbf{n} \cdot \nabla(\frac{1}{3\mu'_s})u_1 = 0}{\nabla u_2 = 0} \\
\nabla u_2 = 0 \\
\nabla u_3 = 0
\end{cases}$$

 $\nabla (1/3\mu')\nabla u_1 - (\mu + \varepsilon \cdot u_2)u_1 = 0$

The variables for ϕ , $[S_0]$, $[{}^3O_2]$, and $[{}^1O_2]_{rx}$ are named u1, u2, u3, u4. The parameters to be determined are α , β , γ , η , κ . ε can be independently measured. $P = g(1 - u_3/u_3(t=0))$

Question?

- How to determine the photochemical parameters that can be used in in-vivo clinical application while most of constants was obtained from in-vitro conditions?
 - Applying the macroscopic model to an in-vivo microscopic model – the spheroid model to obtain photochemical parameters (present work)
 - Apply the macroscopic model to an in-vivo animal model - necrosis study of mouse (future work)

Photofrin-sensitized spheroid model

- Oxygen diffusion is well defined and measurable.
- Photosensitizer distribution is uniform.
- Light fluence distribution is uniform.
- Nichols and Foster, Phys.
 Med. Bio. 39 2161-2181 (1994)
- I. Georgakoudi, MG Nichols, TH Foster, Photochem. Photobiol. 65, 135–144 (1997).

Physics Settings in COMSOL – microscopic model

Governing Equations

$$\begin{cases}
\frac{du_2}{dt} + \left(\gamma\eta \cdot \frac{u_3}{u_3 + \beta} \cdot u_1 \cdot u_2 \cdot \frac{\kappa}{1 + \alpha}\right) u_2 = 0 \\
\frac{du_3}{dt} + \left(S_{\Delta}\gamma\eta \frac{\alpha}{1 + \alpha} \frac{u_1u_2}{u_3 + \beta}\right) - D_{oxy}\nabla^2 u_3 = -\Gamma_{met} \\
\frac{du_4}{dt} = S_{\Delta}\gamma\eta \cdot \frac{u_1 \cdot u_2 \cdot u_3}{u_3 + \beta} \cdot \frac{\alpha}{1 + \alpha} \\
\frac{u_1 + 2A\mathbf{n} \cdot \nabla(\frac{1}{3\mu'_s}) u_1 = 0}{\nabla u_2 = 0} \\
\nabla u_2 = 0 \\
\nabla u_3 = 0
\end{cases}$$

 $\nabla (1/3\mu')\nabla \mu - (\mu + \varepsilon \cdot \mu)\mu = 0$

The variables for ϕ , $[S_0]$, $[{}^3O_2]$, and $[{}^1O_2]_{rx}$ are named u1, u2, u3, u4. Same photochemical parameters α , β , γ , η , κ . ϵ and D_{oxv} can be independently measured. $\Gamma_{met} = \Gamma_{met}^{max} \frac{u_3}{u_2 + k_{50}}, k_{50} = 0.5 \ \mu M.$

Boundary condition for oxygen in spheroid without PDT consumption

Phys Med Biol 39 (1994) 2161-2181

 Steady-state electrode measurement matches the boundary condition established for ³O₂:

$$0 \le r \le R_s$$

$$u_3(r,t=0) = C_m - \left(\frac{\Gamma_{met}^{\max} R_s^3}{3D_{oxy2}}\right) \left(\frac{1}{R_s} - \frac{1}{R_d}\right) - \left(\frac{\Gamma_{met}^{\max}}{6D_{oxy}}\right) \left(R_s^2 - r^2\right)$$

$$R_s \le r \le R_d$$

$$u_{3}(r,t=0) = C_{m} - \left(\frac{\Gamma_{met}^{\max}R_{s}^{3}}{3D_{oxy2}}\right)\left(\frac{1}{r} - \frac{1}{R_{d}}\right)$$

Oxygen consumption follows a diffusion equation.

$$\frac{du_3}{dt} - D_{oxy2} \left(\frac{2}{r} \frac{\partial u_3}{\partial r} + \frac{\partial^2 u_3}{\partial r^2} \right) = 0$$

Fitting results – establishing microscopic model in COMSOL

- The comparison between the [³O₂] (μM) calculated by microscopic model and experimentally measured oxygen data for Photofrin-PDT 514 nm and 50 mW/cm² irradiation at spheroid edge. The computed result was calculated at r = 230 μm.
- Original data obtained from I. Georgakoudi, et al, Photochem. Photobiol. 65, 135–144 (1997).
- Same parameters as the above reference.

Fitting results – establishing microscopic model in COMSOL

[1]. I. Georgakoudi, et al, Photochem. Photobiol. 65, 135–144 (1997).

Fitting results – establishing microscopic model in COMSOL

[1]. I. Georgakoudi, et al, Photochem. Photobiol. 65, 135–144 (1997).

Fitting results – determining oxygen perfusion coefficient, g.

 Fitting macroscopic model to the average oxygen from spheroid model.

$$P = g(1 - u_3/u_3(t=0))$$

- The best fit value is $g = 31 \ \mu M/s$.
- The form for P may need further improvement.

Fitting results – determining oxygen perfusion coefficient, g.

•
$$P = g(1 - u_3/u_3(t=0))$$

- The best fit value of g changes with initial oxygenation conditions and oxygen consumption.
- Spheroid model: u₃(t=0) = 240 μM, u₂(t=0) = 170 μM.
- In-vivo human clinical case: u₃(t=0) = 83 μM, u₂(t=0) = 6 μM.

Comparison of fitting photochemical parameters for photofrin at 630 nm.

	Definition	New values	Old values
α	k7[A]/k6	0.85	2158
β	k4/k2	11.9 μM	12.1 μM
γ	k5/(k5+k3)	0.80	0.8
к	k1/k6	4.8x10 -5 1/μM	0.12 1/μM
η	$\epsilon/h\nu$	0.0188 1/s·cm ² /mW	0.188 1/s·cm ² /mW
$\beta_{PDT}/[S]_0$	$S_{\Delta}\gamma\etalpha/(1+lpha)$	0.0037 1/s·cm ² /mW	0.075 1/s·cm ² /mW
g	Oxygen Perfusion rate	31 µM/s	$1.66 imes 10^{-2} \ \mu M/s$

In-vivo mice experiment to determine photochemical parameters

- Surface irradiation on mice with known optical properties
- Photofrin 5 mg/kg, fluence rate 5 – 100 mW/cm².
- Necrosis depth examination

Surface irradiation predictions: $[{}^{1}O_{2}]_{rx}$ *vs.* depth for different oxygen perfusion coefficient *g*

Photofrin-PDT 630 nm, Source strength 100 mW/cm² $[S_0](t = 0) = 6 \mu M$, $[^3O_2](t = 0) = 83 \mu M$

Surface irradiation predictions: $[{}^{1}O_{2}]_{rx}$ vs. depth for different total fluence and fluence rate.

Surface irradiation predictions: $[{}^{3}O_{2}]$ *vs.* depth for different total fluence.

Photofrin-PDT 630 nm, Source strength 100 mW/cm² $[S_0](t = 0) = 6 \mu M$, $[^3O_2](t = 0) = 83 \mu M$

Surface irradiation predictions: [S] *vs*. depth for different total fluence.

Photofrin-PDT 630 nm, Source strength 100 mW/cm² $[S_0](t = 0) = 6 \mu M$, $[^3O_2](t = 0) = 83 \mu M$

Surface irradiation predictions: $[{}^{3}O_{2}]$ *vs.* depth for different incident fluence rates.

Photofrin-PDT 630 nm, $[S_0](t = 0) = 6 \mu M$, $[^3O_2](t = 0) = 83 \mu M$

Surface irradiation predictions: $[{}^{3}O_{2}]$ *vs.* fluence for different fluence rate.

Photofrin-PDT 630 nm, $[S_0](t = 0) = 6 \mu M$, $[^3O_2](t = 0) = 83 \mu M$

3 mm deep is the bottom of tumor 4 mm is the depth where fluence rate equal to source strength

Surface irradiation predictions: [1O2] *vs.* fluence for different fluence rate.

Conclusions

- We have developed a macroscopic model and compared the results with a microscopic model to determine the photochemical parameters to match the spheroid experimental results.
- The resulting parameters are substantially different from the photochemical parameters obtained from in-vitro experiments.
- The macroscopic model with the appropriate constants can predict variation of tissue necrosis as a function of light fluence rate for surface irradiation.

Future works

- Match the photochemical parameters from in-vivo mice study for the specific photosensitizer of interest and at the oxygen environment similar to clinical cases.
- Improve the oxygen perfusion function for the macroscopic model.
- Incorporation of photosensitizer distribution in the macroscopic model.

Acknowledgement

Collaborators: Theresa Busch, Ph.D. Jarod C. Finlay, Ph.D. Andreea Dimofte, MSc **Betsy Rickter** Funding sources: NIH R01 CA109456 NIH P01 CA87971