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Introduction 

 
A biological tissue is, in first place, a complex 

aggregate of cells embedded in an extracellular matrix 

[1]. We attribute the complexity of these physical 

systems to the compresence of several biological 

entities, with different physical and chemical 

properties, which contribute to determine the 

mechanical properties of the tissue as a whole. For 

example, the presence of fibres, supposed to be 

statistically oriented, influences the flow of the 

interstitial fluid inside the tissue [1]. A fundamental 

characteristic of biological tissues is the property to 

adapt themselves to the stimuli due to the interaction 

with the external environment [1, 4]. We will refer to 

‘remodelling’ as an ensemble of dissipative and 

irreversible processes, which occur in order to modify 

the internal organization of the tissue [4, 2]. The 

problem to model these phenomena is approached, in 

this work, by adapting the theory of Elastoplasticity 

and by interpreting remodelling as a sequence of 

plastic-like distortions [4, 3, 2]. For this purpose, we 

introduce a new kinematic descriptor of the internal 

structure of the body and we derive an evolution law 

satisfying a suitable dissipation principle [4, 3, 2]. In 

the following, we will proceed by presenting a 

mathematical model describing the mechanical 

behaviour of articular cartilage, in which remodelling 

events occur. 

 

Theoretical background  
 

In this section, we shortly introduce the Reader to the 

fundamental aspects of the theory developed for 

formulating the mathematical model presented in this 

contribution. 

 

The transplant operator and the natural state 

 

By referring to [4, 2], we address the study of 

remodelling by invoking the so-called Epstein-Maugin 

decomposition of the deformation gradient 𝑭 

 

 𝑭 = 𝑭e𝚷−1,                    (1) 

   

where 𝑭e is said to be the accommodating part of the 

deformation gradient [4]. The tensor 𝚷 is referred to 

as the implant tensor in [3].  The decomposition (1) of 

the deformation gradient 𝑭 can be achieved by the 

introduction of the so-called natural state, a collection 

of undistorted and stress-free body pieces. In fact, 𝚷 

maps vectors of the tangent space associated with the 

natural state into vectors of the tangent space 

associated with the reference configuration. 

For future use, we introduce the metric tensors G and 

g associated with the reference configuration of the 

tissue and with the three-dimensional Euclidean space, 

respectively. 

  

The fibre pattern 

 

To take into account the macroscopic effect of the 

fibres (see [7]), we introduce, for each point 𝑋 in the 

natural state, the set 𝕊𝑋
𝟐  of all unit vectors attached at 

𝑋, and the function 𝜌𝑋: 𝕊𝑋
2 ⟶  ℝ such that, for 

every 𝖒𝑋 ∈ 𝕊𝑋
𝟐 , 𝜌𝑋(𝖒𝑋) represents the probability 

density that a fibre is aligned along the direction 

identified by 𝖒𝑋. Given a function 𝑓𝑿 defined over 

𝕊𝑋
2 , we also introduce the directional average 

 

 ≪ 𝑓𝑋 ≫   = ∫ 𝑓𝑋(𝖒𝑋)𝜌𝑋(𝖒𝑋)
 

𝕊𝑋
2

.               (2) 

 

With respect to the polar coordinates 𝜗 ∈ [0, 𝜋] and 

𝜑 ∈ [0,2𝜋[, such that 𝖒𝑋 can be written as  

 

𝖒𝑿 = �̂�𝑿(𝜗, 𝜑) 

       = sin 𝜗 cos 𝜑 𝖊𝟏 + sin 𝜗 sin 𝜑 𝖊𝟐 + cos 𝜗 𝖊𝟑, 
 

 

where {𝖊𝟏, 𝖊𝟐, 𝖊𝟑} is an orthonormal vector basis 

attached to 𝑋, equation (2) can be recast in the form 

 

≪ 𝑓𝑋 ≫ = ∫ ∫ 𝑓𝑋(𝜗, 𝜑)�̂�𝑋(𝜗) sin 𝜗 d𝜗d𝜑
𝜋

2
0

2𝜋

0
,  (3) 

 

with  

 

𝑓𝑋(𝜗, 𝜑) = 𝑓𝑋(𝜗, 𝜑) = 𝑓𝑿(�̂�𝑿(𝜗, 𝜑))  

 

�̂�𝑋(𝜗) = �̂�𝑋(𝜗, 𝜑) = 𝜌𝑿(�̂�𝑿(𝜗, 𝜑)).  
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Note that the dependence of �̂� on 𝜗 only is due to the 

fact that the probability density is assumed to be 

transversely isotropic with respect to a global 

symmetry axis of the body, parallel to 𝖊𝟑.  Hereafter, 

we will use the pseudo-Gaussian distribution  

 

 �̂�𝑋(𝜗) =
𝛾𝑋(𝜗)

2𝜋 ∫ 𝛾𝑋(𝜗′)sin(𝜗′)d𝜗′
𝜋/2

0

,          (4) 

 

 

𝛾𝑋(𝜗) = exp (−
(𝜗 − 𝑄)2

2𝜔2
),             (5) 

 

with 𝑄 being the mean angle and 𝜔 the standard 

deviation of the statistical distribution.  

 

Model Equations 

 
In this section, we provide a summary of the governing 

equations of the mathematical model presented in this 

paper.  

 

Balance of mass and momentum 

 

By introducing a Darcian description of the fluid flow, 

the material form of the balance of mass for the solid 

phase reads 

 

 𝐽̇ − Div(𝑲Grad 𝑝) = 0,                    (6) 

 

where 𝐽 = det 𝑭 > 0 is the determinant of the 

deformation gradient tensor 𝑭, 𝑝 is the pore pressure 

and 𝑲  is the material permeability tensor. Under the 

hypothesis of negligible dissipative stress for the fluid 

phase, and if no body force is considered, the balance 

of momentum can be cast in the form [7, 4] 

 

Div(−𝐽𝑝𝒈−1𝑭−T + 𝑷sc) = 𝟎,                    (7) 

where 𝑷sc is the constitutive part of the first Piola-

Kirchhoff stress tensor. 

 

Dissipation inequality and remodelling law 

 

It is possible to prove (see [4, 2]), that the dissipation 

inequality can be formulated as 

 

 𝐷 = 𝐷flow + 𝐷rem ≥ 0,                   (8) 

 

where 𝐷flow = 𝑲: [Grad 𝑝 ⊗ Grad 𝑝] is the 

dissipation associated to fluid and 𝐷rem is the 

contribution to the dissipation due to the remodeling. 

Since 𝐷flow ≥ 0, because of the semi-positive 

definiteness of 𝑲, the inequality (8) is equivalent to 

require that 𝐷rem ≥ 0. It has been proved  [2] that  

 

 𝐷rem = 𝒀: sym(𝚲𝑪−𝟏),                 (9) 

 

where 𝒀 = 𝑪𝑺sc𝑪 is an auxiliary measure of stress that 

is made covariant by left and right multiplication 𝑺𝐬𝐜 

by 𝑪, 𝑺sc is the constitutive part of the Second Piola-

Kirchhoff stress tensor, and 𝚲 = �̇�𝚷−1 is the so-called 

tensor of rate of remodelling [3, 2]. As consequence of 

the dissipation principle (8), we propose the following 

equation for describing the evolution of 𝚷 

 

sym(𝚲𝑪−1) = −ζ (𝑺sc −
1

3
tr(𝑪𝑺sc)𝑪−1),    (10) 

 

where 𝜁 is a positive model parameter. 

 

Constitutive Framework 
 

We suppose that the tissue we are studying exhibits a 

hyperelastic behaviour with respect to the natural 

state, which is a collection of undistorted and stress-

free body pieces. In addition, we assume that the 

anelastic distortions are volume preserving, in the 

sense that 𝐽Π = det(𝚷) = 1. If 𝑪e = 𝑭e
T𝒈𝑭e = 𝚷T𝑪𝚷 

denotes the elastic part of the right Cauchy-Green 

deformation tensor, the strain energy function can be 

expressed as the sum of two contributions (see [7] and 

references therein) 

 

�̂�𝜈(𝑪e) =  �̂�matrix(𝑪e) + �̂�fibres(𝑪e).          (11) 

 

The first term of the right-hand-side of (11) accounts 

for the hyperelastic properties of the non-fibrous 

matrix, while the second term represents the 

macroscopic effect of the fibres. In particular, we have 

 

  �̂�matrix(𝑪e) = Φsν�̂�(𝐽e) + Φ0sν�̂�0(𝑪e),        (12) 

 

and 

 

         �̂�fibers(𝑪e) = Φ1sν�̂�ens(𝑪e).   (13) 

 

In (12) and (13), 𝐽e = det 𝑭e is the elastic volumetric 

ratio,Φsν Φ0sν and Φ1sν are the volumetric fractions 

of the solid phase, matrix and fibres respectively, 

evaluated in the natural state. In the case of a sample 

of tissue of cylindrical shape, it is rather customary to 

assume that the sample is homogeneous on each plane 

orthogonal to the axis of the cylinder, which is thus 

regarded as a symmetry axis for the sample. 

Furthermore, to allow for material inhomogeneities, 

the sample's material properties are assumed to vary 

along the cylinder's axis. To this end, it is convenient 
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to introduce the normalised axial coordinate 𝜉 ∈ [0,1], 
with 𝜉 = 0 and 𝜉 = 1 individuating the lower and the 

upper surface of the sample, respectively. In this study, 

the considered sample of tissue is regarded as axially 

inhomogeneous through the spatial variability of the 

volumetric fractions of matrix and fibres, which, 

consistently with experimental data [7], are defined as 

 

Φsν = −0.100𝜉 + 0.250,                            (14)    

 

Φ0sν = −0.062𝜉2 − 0.038𝜉 + 0.046,           (15) 

 

Φ1sν = +0.062𝜉2 − 0.138𝜉 + 0.204,           (16) 

 

The penalty term 

 

�̂�(𝐽e) = 𝛼0ℋ(𝐽cr − 𝐽e)
(𝐽e − 𝐽cr)2𝑞

(𝐽e − Φsν)𝑟
, (17) 

 

enforces the condition  𝐽e ≥ Φsν. In (20) 𝛼0 =
0.125 [MPa], 𝐽cr = Φsν + 0.1 is a threshold value for 

𝐽e, 𝑟 = 0.5, 𝑞 = 2 are material parameters which give 

us information about the rate at which the term �̂�(𝐽e) 

diverges when 𝐽e tends to Φsν , and ℋ is the Heaviside 

function, which is active whenever its argument is 

strictly greater than zero. The isotropic contribution 

�̂�0(𝑪e) is the Holmes-Mow like term [5] 

 

 �̂�0(𝑪e) = 𝛼0

exp(𝛼1[𝐼1 − 3] + 𝛼2[𝐼2 − 3]) 

[𝐼3]𝛼3
 (18) 

 

where 𝛼1 = 0.778, 𝛼2 = 0.111 [MPa], 𝛼3 = 1 are 

material parameters and 𝐼1 = tr(𝑪e), 𝐼2 =
1

2
[tr(𝑪e)2 − tr(𝑪e

2)] and 𝐼3 = det(𝑪e) are the first 

three principal (isotropic) invariants of 𝑪e. In (13), the 

term �̂�ens(𝑪e) is the sum of two contributions  

 

�̂�ens(𝑪e) = �̂�1i(𝑪e) + 〈〈�̂�1a(𝑪e, 𝖆 )〉〉,       (19) 

 

where �̂�1i(𝑪𝐞) describes the isotropic contribution of 

the fibres and has the same functional form of (18) and  

 

�̂�1a(𝑪e, 𝖆 ) =  ℋ(𝐼4 − 1)
𝑐

2
[𝐼4 − 1]2,         (20) 

represents the anisotropic effect of the fibre pattern, 

with 𝖆 = 𝖒 ⊗ 𝖒 being the structure tensor field 

defined in the natural state, 𝖒 the unit vector field 

defining the direction of the fibre, 𝐼4 =  𝑪e: 𝖆 is the 

fourth invariant of 𝑪𝐞 and 𝑐 = 7.46 [MPa] is an 

elastic coefficient. To introduce the constitutive 

expression of the permeability tensor 𝑲, we follow [5] 

where 𝑲 is split additively as: 

 

𝑲 = 𝐽𝑘0𝑪−𝟏 + 𝐽−1𝑘0𝜫〈〈𝒁〉〉𝚷−1                 (21) 

 

The first term on the right-hand side of (21) is an 

isotropic term, whereas the second one models the 

effects of the fibres. In particular, 𝒁 is given by 

 

𝒁 =
𝖆

𝐼𝟒

,                 (22) 

 

and 𝑘0 is the Holmes-Mow scalar permeability [5], 

which is constitutively assigned as  

 

𝑘0 = 𝑘0ν [
 𝐽e − Φsν

1 − Φsν

]
𝜅

exp [
𝑚0

2
(𝐽e

2 − 1)].   (23) 

 

In (26), the coefficient 𝑘0ν is a given function of the 

material point through the volume ratio in the natural 

state, i.e., 

 

where 𝑘0𝜈
(0)

= 3.7729 ∙ 10−3 mm4(Ns)−1 is the 

referential permeability, 𝑒𝜈 = (1 − Φsν) Φsν⁄  is the 

void ratio in the natural state, 𝑒𝜈
(0)

= 4 is a reference 

value for the void ratio, while 𝜅 = 0.0848 and 𝑚0 =
4.638 are model parameters [5, 6, 4]. The expressions 

for the mean angle Q and the standard deviation 𝜔 in 

(6) are respectively given by 

 

𝑄(𝜉) =
𝜋

2
{1 − cos (

𝜋

2
[−

2

3
𝜉2 +

5

3
𝜉])}         (25) 

 

 𝜔(𝜉) = 103[(1 − 𝜉)𝜉]4 + 3 ∙ 10−2                 (26) 

 

Finally, for the remodelling law (13) we have that 

 

𝜁 = 𝜆 [
‖dev(𝝈sc)‖ − 𝜎𝑌

‖dev(𝝈sc)‖
]

+

,                       (27) 

 

where 𝜆 is a material parameter defined by the relation 

𝜆 = 𝜆0 (
𝜙𝑠𝜈

𝐽
)

2

, with 𝜆0 = 0.5 (MPa ∙ s)−1, 𝜎sc is the 

constitutive Cauchy stress tensor, 𝜎𝑌 = 0.002 MPa is 

a constant yield stress and [∙]+ extracts the positive 

part of the function to which it is applied [4, 2].  

 

Simulations 

 
To solve Equations (6), (7), and (11), we implemented 

a benchmark problem in COMSOL. After performing 

the polar decomposition 𝚷 = 𝑽. 𝑹 [6], we assume that 

𝑹 reduces to a shifter from the natural state to the 

reference configuration of the tissue [6] and we thus 

consider 𝑽 as the only unknown factor of 𝚷. This 

𝑘0ν = 𝑘0𝜈
(0)

[
 𝑒ν

𝑒𝜈
(0)]

𝜅

exp [
𝑚0

2
((

1+𝑒ν

1+𝑒𝜈
(0))

2

− 1)]     (24) 
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allows us to close the mathematical problem, which 

consists of ten scalar equations (i.e., (6), (7) and (11)) 

in the ten unknowns 𝑝, (𝜒𝑎)𝑎=1
3  (𝑉𝐴𝐵 = 𝑉𝐵𝐴)𝐴,𝐵=1

3  

[2]. 

 

Benchmark test 

 

The mechanical properties of articular cartilage can be 

investigated by means of an unconfined compression 

test on a cylindrical specimen of articular cartilage [7, 

4, 3].  To simulate this test and solve for 𝜒, 𝑝 and 𝑽, we 

impose the boundary conditions 

 

{
𝜒3 = 𝑓

(−𝑲Grad 𝑝). 𝑵 = 0
         on 𝜕𝐵𝑅

(𝑢)
,     (28) 

 

 

{
(−𝐽𝑝𝒈−1𝑭−T + 𝑷𝑠c). 𝑵 = 𝟎

𝑝 = 0
  on 𝜕𝐵𝑅

(𝑙)
,    (29) 

 

 

{
𝜒(𝑋, 𝑡) − 𝜒(𝑋, 0) = 𝟎
(−𝑲Grad 𝑝). 𝑵 = 0

   on 𝜕𝐵𝑅
(𝐿)

.   (30) 

 

In (32), (33), and (34), 𝜕𝐵𝑅
(𝑢)

, 𝜕𝐵𝑅
(𝑙)

, and 𝜕𝐵𝑅
(𝐿)

 denote, 

respectively, the upper, the lateral and the lower part 

of the boundary 𝜕𝐵𝑅 , 𝑓 is the loading ramp defined by 

 

{
𝐿 −

𝑡

𝑇ramp
uT, for t ∈ [0, 𝑇ramp]

𝐿 − uT, for t ∈ [𝑇ramp, Tend]
             (31) 

 

where uT = 0.20 mm is a target displacement, 

𝑇ramp = 20 s is the instant of time at which the ramp 

ends, 𝑇end = 300 s is the instant of time at which the 

experiment ends and 𝐿 = 1 [mm] is the initial length 

of the specimen, and 𝑵 is the normal vector to 𝜕𝐵𝑅. 

Finally, we impose the initial conditions 

  

{

𝝌(𝑋, 0) = 𝑋,

𝑝(𝑋, 0) = 0

𝑽(𝑋, 0) = 𝑮−𝟏(𝑋).

 

          (35a) 

          (35b) 

          (35c) 

 

COMSOL implementation 

 

To implement equation (6), we used the Darcy’s Law 

package (Fluid Flow module), with the components of 

the permeability tensor taken from (21). To solve 

Equation (7), we used the Solid Mechanics package 

(Structural Mechanics module), in which we modified 

the weak form to implement the constitutive part of the 

second Piola-Kirchhoff stress tensor. Finally, the 

DODE package (Mathematics module) has been used 

to implement the remodelling law (11). 

 

Results 

 

In this section, we would like to show influence of the 

tissue's anisotropy on the development of the 

distortions related to remodelling. We do that by 

comparing the production of distortions in two 

different cases. First, we solve Equations (6), (7) and 

(11) with boundary and initial conditions (28) - (30) 

by turning off all the anisotropic terms accounting for 

the presence of the fibres. We will refer to this case as 

to ‘Model M1’ [2]. This amounts to solve the fully 

isotropic version of the complete model, which is 

indicated by ‘Model M2’ [2].  With reference to Figure 

1, we notice that, if we take into account the presence 

of the fibres, ‘Model M2’ predicts a production of 

anelastic that is bigger than that characterising ‘Model 

M1’. To measure the magnitude of the plastic-like 

distortions associated with remodelling, we introduced 

the Frobenius norm ‖𝑬p‖ of the Almansi-Euler like 

strain tensor 𝑬p =
1

2
[𝚷−T. 𝚷−1 − 𝑮]. In particular, 

while in the case of ‘Model M1’ the trend of ‖𝑬p‖ is 

linearly increasing, in the case of ‘Model M2’ the 

quantity ‖𝑬p‖ grows quite rapidly and it seems to 

reach a stationary value. 

 

 
Figure 1. Evolution of the Frobenius norm of the deviatoric 

stress dev(𝝈) as function of time, in correspondence of the 

material point 𝑋𝑈 of Cartesian coordinates (1.3, 0.0, 1.0) 

[mm]. 

 

Conclusions and future work 
 

In this work, we presented a mathematical model 

developed to investigate the mechanical behaviour of 

a certain class of biological tissues. In particular, we 

focused on the study of articular cartilage, as a fibre-

reinforced soft porous medium filled with an 

interstitial fluid. In addition, we enriched the model by 

considering the presence of dissipative remodelling 

phenomena, i.e., the possibility for the tissue to 
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reorganize its internal structure. This has been done by 

referring, essentially, to the theory of Elastoplasticity 

[4].  
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