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Abstract: The depressurization process is the 

emptying of one tank to another one through a pipe 

network. In order to optimize the design of pipes and 

tanks, a good knowledge of the gas flow behavior is 

required. The modeling of compressible flows with 

a Mach number near 1 is quite challenging and 

simplifications are necessary to create an efficient 

numerical tool. Thus, a simple model is developed 

here, using COMSOL Multiphysics and the “Non-

Isothermal Pipe Flow” interface. A theoretical 

validation is made by confrontation with analytical 

results. Then, using experimental results in multiple 

configurations, the model is adjusted to make it 

predictive.  

Keywords: Compressible flow, Depressurization 

process, Gas discharge. 

1. Introduction 

The accurate modeling of compressible flows is still 

a challenge. In a pipe, oscillatory effects appear due 

to quick variations of the density when the Mach 

number is larger than 0.3 [1]. Still a macroscopic 

view of the phenomenon can be obtained thanks to 

many simplifications. 

Here, the system is composed of two spherical 

reservoirs, the container (𝐶) and the receiver (𝑅), 

connected by a pipe (𝑃) of constant section. They 

are all filled by a gas (Figure 1). The container is set 

to high-pressure, and is mechanically isolated of the 

rest by a valve (𝑉). The system lies in an 

environment (𝐸). The goal is to obtain a global view 

on the dynamic and the thermodynamic of the 

system at the opening of the valve, to get a better 

understanding of it. 

The model developed here is inspired by a simple 

approach proposed in [2]. First, a theoretical 

development is made. Then, a critical point of the 

implementation in COMSOL Multiphysics is 

discussed, illustrated by numerical issues. The 

validation of the model is achieved, based on 

theoretical results. Finally, it is adjusted using 

experimental data. 

2. Modeling 

A compressible flow is characterized by the 

movement variables and the thermodynamic 

quantities: the speed 𝑢 [𝑚. 𝑠−1], the density 

𝜌 [𝑘𝑔. 𝑚−3], the pressure 𝑝 [𝑃𝑎] and the 

temperature 𝑇 [𝐾]. These quantities are linked by a 

system of 4 equations: the mass, momentum and 

energy balances, and the constitutive equation. In 

this work, the Reynolds number is high, of the order 

of 105, resulting in a turbulent flow. Plus, oscillatory 

effects appear when the Mach number is near 1. A 

global view is only necessary and the geometry is 

very simple. Hence, many hypotheses are proposed 

firstly. Then, the behavior of the gas within the 

system is described in each subsystem. Interface 

conditions are given to ensure the model consistency 

and to fulfill the second law of thermodynamics. 

Table 1 lists the parameters of the model. 

Table 1. Parameters of the model 

Entity Parameter Symbol [Unit] 

Gas 

Dyn. viscosity 𝜇 [𝑃𝑎. 𝑠] 

Specific heat ratio 𝛾 [1] 

Th. conductivity 𝜆 [𝑊. 𝑚−1. 𝐾−1] 

Molar mass 𝑀[𝑘𝑔. 𝑚𝑜𝑙−1] 

(𝑃) 

Length 𝐿 [𝑚] 

Internal radius 𝑟 [𝑚] 

Rugosity 𝜀 [𝑚] 

(𝐶) Volume 𝑉𝐶  [𝑚3] 

(𝑅) Volume 𝑉𝑅  [𝑚3] 

(𝑉) Valve opening time 𝜏 [𝑠] 

(𝐸) Ext. temperature 𝑇𝐸  [𝐾] 

(𝐶) 
Initial pressure 𝑝0

𝐶  [𝑃𝑎] 

Initial temperature 𝑇0
𝐶  [𝐾] 

(𝑃), (𝑅) 
Initial pressure 𝑝0 [𝑃𝑎] 

Initial temperature 𝑇0 [𝐾] 

 

Hypotheses 

Due to the pipe dimensions, i.e. its diameter is 

negligible compared to its length, a 1-D approach is 

considered. Both of tanks are modeled in 0-D. To 

justify that, a set of hypotheses are given here, whose 

the most are adapted from [2]. 

Figure 1. Overview of the system. 
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The environment (𝐸) is assumed to be isothermal 

in space and time. Since the size of the system is 

assumed to be negligible compared to the size of 

(𝐸), and the duration of the process is less than 30 

seconds, the heat diffusion in (𝐸) is neglected. 

The tanks (𝐶) and (𝑅) are simplified by points, 

since the interest of this study is to get the 

characteristic state of the gas at each time. In this 

case, the value of the variables is assumed to be 

spatially uniform. Since the diameter of the pipe is 

negligible compared to the size of the tanks, the 

velocity of the gas in these latter is assumed to be 

null. The gas is assumed to follow the ideal gas law. 

Thus, the specific heat capacities (𝑐𝑣  and 𝑐𝑝) are 

given under this hypothesis. Finally, the exchanges 

with (𝐸) are approximated using the Nusselt 

number, as developed in [2], assuming that the 

natural convection prevails. 

The pipe (𝑃) is straight and of small constant 

section, allowing to model it by a segment. Thus, the 

movement variables and the thermodynamic 

quantities are approximated by their mean value on 

each section. During the process, the particles reach 

a high temperature and they are at high speed. In this 

case, their lifetime within the pipe is of the order 

of 1 𝑚𝑠. Thus, the flow is assumed adiabatic. 

Finally, as in the tanks, the gas is assumed to follow 

the ideal gas law. 

These hypotheses require the introduction of 

several new variables. Each variable has a scalar 

value. This set of variables is given in Table 2. 

Table 2. Variables of the model 

Entity Variable Symbol [Unit] 

(𝐶) 

Pressure 𝑝𝐶  [𝑃𝑎] 

Temperature 𝑇𝐶  [𝐾] 

Density 𝜌𝐶  [𝑘𝑔. 𝑚−3] 

(𝑃) 

Gas velocity 𝑢 [𝑚. 𝑠−1] 

Pressure 𝑝 [𝑃𝑎] 

Temperature 𝑇 [𝐾] 

Density 𝜌 [𝑘𝑔. 𝑚−3] 

(𝑅) 

Pressure 𝑝𝑅 [𝑃𝑎] 

Temperature 𝑇𝑅 [𝐾] 

Density 𝜌𝑅 [𝑘𝑔. 𝑚−3] 

 

In the following, 𝑃1 refers to the interface point 

(𝐶) ⋂(𝑃), 𝑃2 refers to (𝑃) ⋂(𝑅). 

Fluid Behavior 

In the pipe (𝑃), the 4 equations describing a 

compressible flow stands as follows. Equations 

(1) (2) (3) refer to the mass, momentum and energy 

balances. Equation (4) is the ideal gas law. 

𝜕𝜌

𝜕𝑡
+ 𝛻(𝜌𝑢) = 0 (1) 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢𝛻𝑢) = −

𝜌

4𝑟
𝑓𝐷|𝑢|𝑢 − 𝛻𝑝 (2) 

𝜌𝑐𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑢𝛻𝑇) = 𝛻(𝜆𝛻𝑇) +

𝜌

4𝑟
𝑓𝐷|𝑢|𝑢2 +

𝜕𝑝

𝜕𝑡
+ 𝑢𝛻𝑝 (3) 

𝑝𝑀 = 𝜌𝑅𝑇 (4) 

In these equations, 𝑓𝐷 is the Darcy friction factor, 

which describes the friction losses. It is given by the 

Churchill’s friction model [3], which is accurate both 

in laminar and turbulent regimes, reached in the 

process. 𝑅 is the gas constant. The operator 𝛻 refers 

to the spatial partial derivative 
𝜕

𝜕𝑥
. 

In the tanks (𝐶) and (𝑅), the gas follows the mass 

and energy balances, and the ideal gas law. Being at 

a higher pressure than the rest of the system, (𝐶) 

loses particles, and then energy, expressed as a gain 

of kinetic energy in the pipe. Symmetrically, (𝑅) 

gains particles and energy. Both of them exchanges 

heat with the environment (𝐸), using exchange 

coefficients ℎ𝑊
𝐶  and ℎ𝑊

𝑅 , expressed by the Nusselt 

number [2]. 𝐴 refers to the section of the pipe. The 

coefficient 𝑆𝐶 (resp. 𝑆𝑅) is the surface of the 

spherical volume 𝑉𝐶 (resp. 𝑉𝑅). To do not overload 

the notations, in (𝐶) (resp. (𝑅)), without 

ambiguities, 𝜌, 𝑢 and 𝑇 designate their values at the 

extremities of the pipe 𝑃1 (resp. 𝑃2). In (𝐶), (5) and 

(6) refer to the mass and energy balances, and (7), 

the ideal gas law. 

𝑉𝐶
𝜕𝜌𝐶

𝜕𝑡
= −𝜌𝑢𝐴 (5) 

𝜕𝑈𝐶

𝜕𝑡
= −𝜌𝑢𝐴 (𝑐𝑝𝑇 +

𝑢2

2
) + ℎ𝑊

𝐶 𝑆𝐶(𝑇𝐸 − 𝑇𝐶) 

𝜕𝑈𝐶

𝜕𝑡
= 𝑐𝑣𝑉𝐶

𝜕(𝜌𝐶𝑇𝐶)

𝜕𝑡
 

(6) 

𝑝𝐶𝑀 = 𝜌𝐶𝑅𝑇𝐶 (7) 

In (𝑅), (8) and (9) refer to the mass and energy 

balances, and (10), the ideal gas law. 

𝑉𝑅
𝜕𝜌𝑅

𝜕𝑡
= 𝜌𝑢𝐴 (8) 

𝜕𝑈𝑅

𝜕𝑡
= 𝜌𝑢𝐴 (𝑐𝑝𝑇 +

𝑢2

2
) + ℎ𝑊

𝑅 𝑆𝑅(𝑇𝐸 − 𝑇𝑅) 

𝜕𝑈𝑅

𝜕𝑡
= 𝑐𝑣𝑉𝑅

𝜕(𝜌𝑅𝑇𝑅)

𝜕𝑡
 

(9) 

𝑝𝑅𝑀 = 𝜌𝑅𝑅𝑇𝑅 (10) 

Initial Conditions 

At the beginning of the process, the valve is closed. 

In the pipe, the initial velocity, pressure and 

temperature are spatially uniform. 
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𝑝𝐶(0) = 𝑝0
𝐶, 𝑇𝐶(0) = 𝑇0

𝐶  (10) 

𝑢(0) = 0, 𝑝(0) = 𝑝0, 𝑇(0) = 𝑇0 (11) 

𝑝𝑅(0) = 𝑝0, 𝑇𝑅(0) = 𝑇0 (12) 

Interface Conditions 

On 𝑃1 and 𝑃2, boundary conditions are necessary to 

couple the thermodynamic variables of the tanks and 

the pipe. It also defines well the flow within the pipe. 

These conditions are not trivial. 

At the beginning of the process, during 𝜏, the 

opening duration, there is a discontinuity between 

the pressure in (𝐶) and on 𝑃1. Thus, a temporal 

smoothing is necessary, which transposes the idea 

that the pressure and the temperature of (𝐶) are 

“transferred” to 𝑃1 (equations (13) and (14)). 

𝑝|𝑃1 = (1 − 𝜃)𝑝0 + 𝜃𝑝𝐶  (13) 

𝑇|𝑃1 = (1 − 𝜃)𝑇0 + 𝜃𝑇𝐶 (14) 

In these equations, 𝜃 is a function depending only 

on time, such that 𝜃(0) = 0, 𝜃(𝑡) = 1 for 𝑡 ≥ 𝜏, at 

least continuous. 

During the process, the second law of 

thermodynamics imposes that the Mach number 𝑀𝑎 

within the pipe cannot exceed 1 since the section is 

constant. This critical state can only be reached on 

𝑃2 [2]. For an ideal gas, the speed of sound is given 

by 𝑐 = √𝛾
𝑅

𝑀
𝑇, and the Mach number by 𝑀𝑎 =

𝑢

𝑐
. 

When 𝑀𝑎|𝑃2 is beneath 1, the pressure on 𝑃2 is 

equal to the one in (𝑅). At the critical state 𝑀𝑎|𝑃2 =

1, shock waves arise in the receiver, and a critical 

pressure 𝑝∗ is reached on 𝑃2, greater than the 

pressure in (𝑅) (equation (15)). The gas is dumped 

in (𝑅), that can be modeled by a heat outflow 

condition on 𝑃2 (equation (16)). 

𝑝|𝑃2 = 𝑝𝑅 and 𝑀𝑎|𝑃2 < 1 

(15) or 

𝑝|𝑃2 = 𝑝∗ and 𝑀𝑎|𝑃2 = 1 

𝛻𝑇 = 0 (16) 

3. Implementation with COMSOL 

Multiphysics 

This system can be modeled in COMSOL 

Multiphysics. The Non-Isothermal Pipe Flow 

interface is used on a segment of length 𝐿 to take into 

account the fluid flow. The exchanges with the tanks 

are implemented using the Point ODE interface on 

the extremities. The Events interface is used to treat 

the critical state. 

Numerical Aspects of the Critical State 

The equation (15) implies a change of the boundary 

condition on the pressure on 𝑃2 during the process. 

In order to treat that case, an equation is used to 

choose the out pressure according to the sonic 

regime on 𝑃2. Because of the floating-point 

inaccuracies and the error made during the 

computation, the case 𝑀𝑎|𝑃2 = 1 is not reachable 

numerically. Using a threshold on 𝑀𝑎|𝑃2 to detect 

this case is not sufficient, since it can cause a wide 

discontinuity on the velocity and the pressure on 𝑃2, 

and it makes impossible the return to 𝑀𝑎 < 1. A 

cycle between both sonic states exists, and can be 

modeled by a Moore machine (Figure 2, in black). 

Thanks to the notion of sonic state, this automaton 

can be modified using well-chosen thresholds, in 

order to be usable numerically. They are chosen such 

that the conditions (𝑎) and (𝑑) cannot be satisfied at 

the same time (resp. (𝑏) and (𝑐)) (Figure 2, in red). 

In COMSOL Multiphysics, the Events interface 

makes it possible to transpose this automaton. This 

interface needs to use a temporal solver. The 

advantage is that, during the computations, when a 

transition is almost satisfied, the solver takes small 

time steps in order to be as accurate as possible. 

Space and Time Discretization 

To be confident with the results, it is necessary to 

choose adapted steps of discretization in space and 

time. A study of sensitivity to the mesh shows that it 

is sufficient to mesh the segment by a uniform 

distribution of at least 1000 nodes. A coarser mesh 

induces a loss of mass during the process, due to 

 
Subsonic 

𝑝|𝑃2 = 𝑝𝑅 

 
Critical up 

𝑀𝑎 = 1 

 

 
Critical down 

𝑝|𝑃2 = 𝑝𝑅 

 
Sonic 

𝑀𝑎 = 1 

 

(𝑎) 𝑀𝑎 = 1 (𝑏) 𝑝|𝑃2 > 𝑝𝑅 

(𝑐) 𝑝|𝑃2 = 𝑝𝑅 (𝑑) 𝑀𝑎 < 1 

(𝑎′) 𝑀𝑎 ≥ 1 (𝑏′) 𝑝|𝑃2 > 𝑝𝑅 + 𝜀𝑃 

(𝑐′) 𝑝|𝑃2 ≤ 𝑝𝑅 (𝑑′) 𝑀𝑎 < 1 − 𝜀𝑀𝑎  

Figure 2. Cycles of the critical condition. 

The boundary condition is given for each state in each 

bubble. Next to the arrows are the conditions of transition 

between each state. The conditions in continuous time are 

in black, whereas the conditions in discrete time for 

numerical purposes are in red. 
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discretization errors. The time discretization needs 

more accuracy. Since the critical condition is 

reached very quickly, an initial step of at most 10−7𝑠 

is a good choice. When 𝑀𝑎|𝑃2 returns to less than 1, 

the gas is less agitated and the step chosen 

automatically by COMSOL Multiphysics is 

sufficient. 

4. Theoretical Validation 

In order to make sure that the model is able to 

simulate accurately the process, a validation step is 

necessary. First, a numerical validation is performed, 

by verifying a few necessary conditions on the 

solution, often given by physical balances. Then, a 

comparison with analytical results is also made in a 

simplified case, to check the consistency of the 

model with the theory. 

Checking with Balances 

To avoid rapidly large inconsistencies with the 

theory, checking physical balances is advocated. For 

example, a first checking of the consistency of a flow 

can be made using a mass flow rate balance 

(equation (17)). In the same way, the respect of the 

ideal gas law in the pipe can be checked (equation 

(18)). 

𝐴 (𝜌|𝑃1𝑢|𝑃1 − 𝜌|𝑃2𝑢|𝑃2 − ∫
𝜕𝜌

𝜕𝑡𝑃

𝑑𝑥) = 0 (17) 

𝑝𝑀 − 𝜌𝑅𝑇 = 0 (18) 

The only difficulty is to appreciate the result. 

These equations will never be respected, due to the 

numerical errors. Informally, to use it as a quick way 

to verify if there is an inconsistency, it is sufficient 

to check that these quantities are close to 0, e.g. the 

absolute value is less than 10−3. 

Comparison with Analytical Results 

In order to check the respect of the critical condition 

and to increase the confidence with the model, a 

comparison with analytical results in a simplified 

case is made here. Only the flow within the pipe is 

considered. In the case of a steady flow without 

friction losses, the value at the extremity of the pipe 

for 𝑝, 𝑇, 𝜌 and 𝑞𝑚, the mass flow rate, are known 

under the critical condition [4]. To attain quickly 

𝑀𝑎|𝑃2 = 1, a convergent pipe is considered, ending 

by a col, i.e. 𝐴 is a function of 𝑥. The mass, 

momentum and energy balances are rewritten as 

follows, completed by the ideal gas law (equations 

(19) (20) (21) (22)). 

𝛻(𝐴𝜌𝑢) = 0 (19) 

𝜌𝑢𝛻𝑢 = −𝛻𝑝 (20) 

𝐴𝜌𝑐𝑝𝑢𝛻𝑇 = 𝛻(𝐴𝜆𝛻𝑇) + 𝐴𝑢𝛻𝑝 (21) 

𝑝𝑀 = 𝜌𝑅𝑇 (22) 

The boundary conditions are chosen such that the 

critical condition is reached at the end extremity of 

the pipe. Thus, a high pressure is imposed in 𝑃1 (e.g. 

300 𝑏𝑎𝑟) and the velocity in 𝑃2 is chosen such that 

𝑀𝑎|𝑃2 = 1. Under these conditions, the critical 

values are the following [4] (equations (23) (24) 

(25) (26)). 

 

 

Figure 3. Mach number and 𝐴 (top), and mass flow rate 

and enthalpy conservation (bottom) along the pipe. 

 

Figure 3 gives confidence in the model. The 

values for the Mach number, the pressure, the 

temperature, the density and the mass flow rate at the 

extremity of the pipe are the same than those 

predicted by the theory. Plus, the mass flow rate and 

the enthalpy are conserved. 
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𝑝|𝑃2 = 𝑝|𝑃1 (
2

𝛾 + 1
)

𝛾
𝛾−1

 (23) 

𝑇|𝑃2 = 𝑇|𝑃1

2

𝛾 + 1
 (24) 

𝜌|𝑃2 = 𝜌|𝑃1 (
2

𝛾 + 1
)

1
𝛾−1

 (25) 

𝑞𝑚 = [
𝑀

𝑅
(

2

𝛾 + 1
)

1
𝛾−1

√
2𝛾𝑅

𝑀(𝛾 + 1)
]

𝑝|𝑃1

√𝑇|𝑃1

 𝐴|𝑃2 (26) 

5. Adjustment with Experimental Results 

The purpose of this model is to forecast the gas 

behavior within the pipe and the tanks. Here, the 

results of the model are compared with experimental 

data, in order to adjust it. In these experiments, a gas 

is put at high pressure in (𝐶), whereas (𝑃) and (𝑅) 

are put under vacuum. The data come from two 

batches of experiments including those from [2] 

prefixed by 𝑆𝐶ℎ96. Different gases and pressures 

have been used. Table 3 gathers the gas types and the 

initial pressures in (𝐶) and (𝑃) and (𝑅) for each 

experiment. 

Table 3. Condition of the experiments 

Experiment Gas 
𝒑𝟎

𝑪 

[bar] 

𝒑𝟎 

[bar] 

𝑆𝐶ℎ96 𝐼𝐼𝐼 Helium (4He) 319 0.08 

𝑆𝐶ℎ96 𝑋𝐼 Deuterium (D2) 308 0.11 

𝐸1 Argon (Ar) 162 0.01 

𝐸2 Helium (4He) 135 0.5 

𝐸3 Helium (4He) 60 0.4 

 

Adjustments of the Equilibrium Pressure 

A first step consists in the comparison of the 

experimental and the model pressures in the tanks. 

Globally, the behavior of the pressure is captured by 

the model, i.e. the trend of the model fit the trend of 

the experiments (Figure 4, Figure 5). However, a 

shift on the pressure in (𝑅) is present on each 

experiment 𝐸1, 𝐸2, 𝐸3. In fact, the quantity of gas 

in (𝐶), i.e. its mass, seems to be underestimated. We 

could explain this by an inaccurate measure of the 

temperature, particularly the initial one. In reality, in 

the experiments 𝐸1, 𝐸2, 𝐸3, a first discharge occurs 

from (𝐶) to an auxiliary pipe network (not shown 

here), before the discharge studied here. Thus, (𝐶) is 

not initially at a thermodynamic equilibrium, 

contrary to (𝑅). Since the heat diffusion to the sensor 

is a slow process, the measured temperature is 

smoothened and delayed, resulting in an 

overestimation of our initial temperature in (𝐶). 

 

Figure 4. Pressure in the container, 𝐸1 and 𝐸3. 

 

 

Figure 5. Pressure in the receiver, 𝐸1 and 𝐸3. 

 

The system reaches an equilibrium state when the 

time tends to infinity. We assumed that the 

temperature in the environment is spatially and 

temporally uniform, i.e. the equilibrium temperature 

is 𝑇𝐸. The experimental results make it possible to 

estimate the equilibrium pressure, and then the 

equilibrium density too. The mass of gas within the 

system can be deduced. Thus, the initial temperature 

in (𝐶) can be deduced applying the constitutive 

equation. Figure 6 and Figure 7 show the results 

using an initial temperature consistent with the 

equilibrium state. The trend of the transient state 

differs a bit of the experiments at the end of the 

discharge. A possible reason is an underestimation 

of the thermal exchanges between the tanks and the 

environment. With this correction, the gas 

temperatures decreases rapidly into very low values 

(of the order of 120 𝐾), which induces a fast 

decrease of the pressure. The differences between 

the simulated and the real temperatures are discussed 

more precisely in the following part. 
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Figure 6. Pressure in the container, E1 and E3, with the 

correction of the initial temperature. 

 

Figure 7. Pressure in the receiver, E1 and E3, with the 

correction of the initial temperature. 

 

Adjustments of the Temperature 

Under our hypotheses, the model does not 

validate the measured temperatures of 𝐸1, 𝐸2 and 

𝐸3. Thus, we propose here to compare the 

temperatures predicted by the model with the 

measured temperatures of the experiments 

𝑆𝐶ℎ96 𝐼𝐼𝐼 and 𝑆𝐶ℎ96 𝑋𝐼 from [2], where a 

correction of the measurements is proposed, taking 

into account the process of heat diffusion in the 

sensor. The trend of the transient state in (𝐶) has 

been captured by the model during the first seconds 

of the process, but the results are inaccurate (Figure 

8, Figure 9). It is encouraging, since many 

simplifications have been made on the thermal 

exchanges. 

In (𝑅), it is much more complicated. The natural 

convection was assumed to prevail, but the forced 

convection generated by the sonic jet of gas is not 

negligible [2]. A strong hypothesis of the model was 

the uniformity of the temperature in the tanks, which 

is certainly false during the discharge. A correction 

of the estimation of the Nusselt number is proposed 

in [2]. However, in both conditions, the model seems 

to do not make enough exchanges of heat between 

(𝑅) and (𝐸), resulting in thermal aspects completely 

driven by the forced convection (Figure 10). 

 

Figure 8. Temperature in the container, 𝑆𝐶ℎ96 𝐼𝐼𝐼. 

 

 

Figure 9. Temperature in the container, 𝑆𝐶ℎ96 𝑋𝐼. 

 

 

Figure 10. Temperature in the receiver, 𝑆𝐶ℎ96 𝑋𝐼. 

 

6. Conclusions 

Here, we developed a model of the flow of a gas 

within a pipe during a discharge, coupling the flow 

and the thermal exchanges in a 1-D approach. We 

have validated the model on the theoretical point of 
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view in a simplified case, and we have compared its 

predictions with experimental results. The results are 

promising. Under the correction of the initial 

temperature in the container to get consistency with 

the equilibrium state of the system, the model gives 

satisfactory values for the pressure in the tanks. 

Thus, it gives confidence in this 1-D approach that 

uses the ideal gas law. 

The simplification of the thermal exchanges in 

the tanks is one of the limits of the model. The 

uniformity of the temperature is too restrictive, but 

dropping it will result in breaking the 0-D approach. 

To get a better understanding of the heat transfers in 

the receiver tank, it is conceivable to study more 

precisely it separately in 2-D or 3-D. Such a study 

could allow to change the estimation of the thermal 

exchange terms. 
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