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Model the flow to:
➢ Study the sensitivity to the dimensions of the system;
➢ Understand the behavior of the gas flow, the time to reach the equilibrium;
➢ Coupling with others physics: e.g. chemistry, … etc
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The Flow Study and its Issues

INTRODUCTION

Navier-Stokes Equations
(Mass and momentum 

balances)
Energy balance Constitutive law

Precise description of the movement!

Turbulent flow : difficult to 
capture numerically

Shockwaves appearing at the 
sound speed : it breaks the 

continuity hypothesis!
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Model derived from an existing 1D approach 
A Simplified Model for Real Gas Expansion Between Two Reservoirs Connected by a Thin 
Tube, S. Charton, V.Blet et J. P. Corriou, 1995

How to model the gas flow, the tanks and the discontinuity within COMSOL?

Location of the discontinuity given 
by a theoretical development

Possibility to introduce the 
discontinuity

Pipe modeled by a segment No turbulences to handle

Tanks as points
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the exterior

Mass Balance

Mass variation Mass flow at
the junction
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Tank in 0D Junction with the pipe
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0D means a spatial uniformity of:
pressure, temperature and density!

FLOW MODELING



10/18/17

SIMTEC INTRODUCTION FLOW MODELING VALIDATION CONCLUSIONS

Handle the Discontinuity

FLOW MODELING

8



10/18/17

SIMTEC INTRODUCTION FLOW MODELING VALIDATION CONCLUSIONS

Handle the Discontinuity

FLOW MODELING

Subsonic

8



10/18/17

SIMTEC INTRODUCTION FLOW MODELING VALIDATION CONCLUSIONS

Handle the Discontinuity

FLOW MODELING

Subsonic

Critical up

8

Flow saturated to Mach 1
(second law of thermodynamics)



10/18/17

SIMTEC INTRODUCTION FLOW MODELING VALIDATION CONCLUSIONS

Handle the Discontinuity

FLOW MODELING

Subsonic Sonic

Critical up

8

Flow saturated to Mach 1
(second law of thermodynamics)



10/18/17

SIMTEC INTRODUCTION FLOW MODELING VALIDATION CONCLUSIONS

Handle the Discontinuity

FLOW MODELING

Subsonic Sonic

Critical up

Critical down

8

Flow saturated to Mach 1
(second law of thermodynamics)



10/18/17

SIMTEC INTRODUCTION FLOW MODELING VALIDATION CONCLUSIONS

Handle the Discontinuity

FLOW MODELING

Subsonic Sonic

Critical up

Critical down

8

Flow saturated to Mach 1
(second law of thermodynamics)



10/18/17

SIMTEC INTRODUCTION FLOW MODELING VALIDATION CONCLUSIONS

Handle the Discontinuity

FLOW MODELING

Subsonic Sonic

Critical up

Critical down

8

Flow saturated to Mach 1
(second law of thermodynamics)

Conditions modified because of numerical issues



10/18/17

SIMTEC INTRODUCTION FLOW MODELING VALIDATION CONCLUSIONS

Handle the Discontinuity

FLOW MODELING

Subsonic Sonic

Critical up

Critical down

8

Flow saturated to Mach 1
(second law of thermodynamics)

Conditions modified because of numerical issues



10/18/17

SIMTEC INTRODUCTION FLOW MODELING VALIDATION CONCLUSIONS

Handle the Discontinuity

FLOW MODELING

Subsonic Sonic

Critical up

Critical down

8

Flow saturated to Mach 1
(second law of thermodynamics)

Conditions modified because of numerical issues



10/18/17

SIMTEC INTRODUCTION FLOW MODELING VALIDATION CONCLUSIONS

Handle the Discontinuity

FLOW MODELING

Subsonic Sonic

Critical up

Critical down

Events interface

8

Flow saturated to Mach 1
(second law of thermodynamics)

Conditions modified because of numerical issues
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Space Discretization

At least homogeneous 1000 nodes

Avoid numerical loss of mass during
the discharge

Study of sensivity to the mesh

Time Discretization

Speed of sound reached
very quickly

Small timestep at the beginning 
of the simulation (about 10-7s)

Gas less agitated after that: 
COMSOL chooses well its 
timestep automatically
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VALIDATION

Theoretical results exist by neglecting the friction forces
A. Lallemand, Ecoulements monodimensionnels des fluides compressibles, Techniques de 
l'ingénieur, 2014

The model respects the physics laws!
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The model does not reach the real
equilibrium state

Tracks to explain that

● Too reductive assumptions (e.g. 
ideal gas law...)

● The dimensions used to feed the 
model are not correct

● Some of the experimental results 
are not accurate enough

● A mix of them all
Measurements of temperature
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Validation of the model using theoretical and experimental results

Numerical difficulties broken using a 1D approach

General enough interfaces to implement it

Some weaknesses on the thermal exchanges
Inherent to the 0D simplification

The degree of accuracy is satisfaying
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