

Presented at the COMSOL Conference 2009 Milan

Temperature Distribution in High Voltage Dummy Cable

Dr. Guoyan Sun Brugg cable, Switzerland 16. Oct. 2009, Milan

High Voltage Cable

- Highest power ~ 2500 MVA
- High voltage ~ 1000 kV
- High current ~ 1000 A

Energy Loss in High Voltage Cable

Voltage-dependent

for AC power system

 $P_v = U^{2*} ω^* ε_0^* ε_r^* C^* tan \delta$

U: voltage, ω : angular frequency

 ϵ_0 : permittivity of vacuum, ϵ_r : relative permittivity of insulator

C: capacity of insulator, $tan\delta$: dissipatien factor of insulator

Current-dependent

 $P_I = I^{2*}R$

I: current, R: resistance of conductor

Limited Operating Temperature of High Voltage Cable

• High temperature

 \rightarrow increases energy loss

 $\rho = \rho_0^* (1 + \alpha^* (T - T_0))$

 \rightarrow accelerates thermal ageing of cable

• Permissible operating temperature

Insulator	Impregnated Paper	HDPE	XLPE	EPR
Temperature °C	85/90	80	90	90

Temperature Distribution in Dummy Cable Laid in Free Air

- Dummy cable
 no voltage applied, P_v=0
- Heat source resistive loss P_I=I^{2*}R
- Natural convection cooling by free air
- Steady-state reached when heat balances

COMSOL Modelling

2D model

temperature change in cable direction neglected

Coupled electric-thermal problem
 heat source Q=J^{2*} ρ(T)
 actual temperature T depends on
 heat source and natural convection
 cooling

Perpendicular Induction Current, Vector Potential Mode

- Analysis type: Transient heat source Q(ρ(t))
- Skin effect

enhances the current density near conductor surface, the effective resistivity increases

 $\rho_{AC}(T) = (1+Ys)^* \rho_{DC}(T_0)^*(1+\alpha^*(T-T_0))$

Skin effect factor

 $Ys = Xs^{4}/(192+0.8^{*}Xs^{4})$ Xs = $\sqrt{(Ks^{*}\omega^{*}\mu/(\pi^{*}R_{DC}(T_{0}))}$

- μ: magnetic permeability
- Ks: correction factor for segmented

cable

Heat Transfer by Conduction Mode

- Analysis type: Transient
 T(t)
- Conductive inside cable $\rho C_p \partial T / \partial t - \nabla \cdot (k \nabla T) = Q$
- Heat transfer coefficient for air-solid interaction
 - $Q_{transfer} = Hc^*(T_{inf} T)$
 - Hc: coefficient for natural convection
 - around a cylinder
 - $Hc = \kappa/D^*f(\theta)^*Gr^{1/4}$
 - Grashof number
 - $Gr = \beta^* g^* (T-T_{inf})^* D^3 / v^2$

COMSOL Library Model "Cooling Flange"

• Thermal radiation

 $\epsilon^* \sigma^* (T_{inf} {}^4 - T^4)$

Experimental

- 2500 mm² XLPE insulation segmented cable
- AC current, 50 Hz, 2900 A and 2000A separately
- Temperature measured and recorded by using a 6-Channel-Pointprinter from company Eurotherm Chessell

Simulation Results

Comparison of Simulation and Experimental Data

Results influenced very much by Ks:

the skin effect correction factor for segmented cable, should be individually defined

Thank You for Your Attention