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  Development of Integrated Circuits 
 

Moore's law 

 Conventional photonic device 
 

Substrate 

Low-index contrast waveguide 

High-contrast  planar waveguide  Photonic crystal fiber and waveguide 

Motivation - Nanophotonics 

 

~ Diffraction limit 
Channel  waveguide     Slot waveguide 
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Dielectric slot waveguides and applications 

Optical manipulation Optical modulator 

Slot waveguide 

Field distribution 

Ring resonator Optical biosensing 

*V. R. Almeida et. al, Optics Letters 29, 1209-1211 (2004). 
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Dispersion analysis of dielectric slot waveguides 

COMSOL settings 
 Perpendicular waves of RF module- mode analysis 
 Scattering boundary condition 

 
 
 
 

 

 

 
 Group velocity dispersion (GVD) 

 
 Sellmeier’s equation for silicon and silica refractive indices 

*Z. Zheng, M. Iqbal, Optics Communications 281, 5151-5155 (2008). 
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Dispersion analysis of dielectric slot waveguides 

 
 Slot waveguide: In the normal dispersion regime near the 1550 nm wavelengths 
      Channel silicon waveguide: In the abnormal dispersion regime 
 GVD ( slot ) > GVD ( channel ) 
 Higher order dispersion behavior depending strongly on the geometric parameters 

of the slot waveguides (e.g. slot & slab width, material filled in the slot region) 

 
 
 
 

 

 

*Z. Zheng, M. Iqbal, Optics Communications 281, 5151-5155 (2008). 
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Photonic Crystal Fibers (PCF) 

A: Standard optical fiber 
(Total external reflection) 
B: Index-guiding photonic       
crystal fiber  
(Total internal reflection) 
C: Hollow core photonic 
bandgap fiber 
(Photonic bandgap) 

A B C 

Various kinds of PCF 
 
 Lower transmission loss than conventional fibers 
 Substantially higher damage thresholds than 

conventional fibers 
 Promising for various linear and nonlinear optical 

processes 

Merits and Potential of PCFs 

*J. C. Knight, Nature 424, 847-851 (2003). 
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Design of ultrahigh birefringent, ultralow loss PCF 
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*L. An, Z. Zheng. Journal of Lightwave Technology 27, 3175-3180 (2009) 

 
COMSOL settings 
 Perpendicular waves of RF module- mode analysis 
 PML boundary condition 

 
 A core region with a rectangular array of four 

air holes (to provide the birefringence)  
 A conventional circular-air-hole cladding (to 

reduce the confinement loss).  

x-polarization y-polarization 

      Intensity distributions 
with different elliptic ratio of the air hole 

PCF structure 
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 Ultrahigh single-mode birefringence (~10-2) 
 Ultralow confinement losses (<0.002 dB/km) 
 Relatively flat dispersion 
 Easy to fabricate 

Design of ultrahigh birefringent, ultralow loss PCF 

PCF with circular air holes  PCF with elliptical air holes  
Intensity distribution 
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*L. An, Z. Zheng. Journal of Lightwave Technology 27, 3175-3180 (2009) 
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Design of single-polarization, single-mode PCF 

*L. An, Z. Zheng, Optics Communications 282, 3266-3269 (2009) 

Single-mode and single-
polarization propagation 
can be realized by tuning 
geometry of the air holes, 
with low confinement 
loss and small mode 
area 

y-polarization 

      Intensity distribution PCF geometry 



School of Electronic and Information Engineering 

Design of single-polarization, single-mode PCF 

*L. An, Z. Zheng, Optics Communications 282, 3266-3269 (2009) 

Intensity distribution 
Dispersion optimization 

 
COMSOL settings 
 Perpendicular waves of RF module- mode analysis 
 PML boundary condition 

GVD 

Dispersion & confinement loss GVD 

 
 Near-zero, dispersion-flattened 

 Low confinement loss(<0.25 dB/km) 

 
 Small mode area 
 Ultra-wide band (0.3–1.84 μm) 
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Highly nonlinear holey fiber with a high index slot core 

*L. An, Z. Zheng, Journal of Optics, 115502 (2010). 

 
COMSOL settings 
 Perpendicular waves of RF module- mode analysis 
 PML boundary condition 

Proposed structure 
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Highly nonlinear holey fiber with a high index slot core 
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Fiber with a slot core  

Intensity distribution Modal behavior Group velocity dispersion 

 
 Quasi-TE mode well confined in the slot region  
 Single-mode propagation with ultra-small mode area ( < 0.3 μm2 ) 

 A large negative GVD and large GVD slope 

GVD 

*L. An, Z. Zheng, Journal of Optics, 115502 (2010). 
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Highly nonlinear holey fiber with a high index slot core 
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Fiber with a slot core and a two-air-hole cladding   

Fiber with a slot core and a four-air-hole cladding 

 
 Modification of GVD  
       Much lower GVD than that 

without air-hole 
       Different dispersion slope at 

various air-hole parameters   
 Enhancement of the field 

confinement 

 
 
 

 

 

GVD 

GVD 

 
 Even lower absolute GVD 

values  
 Further enhancement of the 

field confinement 

*L. An, Z. Zheng, Journal of Optics, 115502 (2010). 
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Simulation of dielectric waveguides 
and optic fibers using COMSOL 
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Sensing 

Surface plasmons (SPs) 
Light guiding 

 
Diffraction 

limit 

Nanolithography 

Lasing 

Introduction-Surface Plasmons 

*W. L. Barnes, Nature 424, 824-830 (2003). 

 
 Coherent electron oscillations at 

the metal/dielectric interface 
 Field decays exponentially into 

both neighboring media  
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Surface plasmon polariton (SPP) waveguide 

Loss Confinement 
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ndDielectric

Tradeoff 

Introduction-SPP waveguides 

 Advantages 
 Low propagation loss  (a few dB/cm) 

 Disadvantages 
 Weak confinement (mode size~λ) 

 Advantages 
 Tight field confinement (subwavelength scale) 

Insulator/Metal/Insulator (IMI) Metal/Insulator/Metal (MIM) 
 

   CPP waveguides      metal slot waveguide Long-range SPP waveguide 

 Disadvantages 
 Huge loss (propagation length ~ several μm) 
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Hybrid plasmonic waveguide 

 Subwavelength  mode confinement  
              λ2/400 ~λ2/40 
 Long-range propagation distance 
               40 ~ 150 μm  

*R. F. Oulton, Nature Photonics, 2008. 2(8): p. 496-500.  
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Design of symmetric hybrid plasmonic waveguide 

*Y. S. Bian, Z. Zheng, Optics Express 17, 21320-21325 (2009). 
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 Subwavelength confinement (1~2 orders of magnitude higher than 
insulator/metal/insulator waveguides) 

 Low loss ( propagation length~ hundreds of microns) 
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Design of symmetric hybrid plasmonic waveguide 
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 Sub-wavelength field confinement 
 1~2 orders of magnitude higher than long-range SPP waveguides 

 High-density 3D photonic integration( packing density increased by 
nearly 60 times over insulator/metal/insulator waveguides) 

 Finite dimensions in both directions, enabling multilayer, 3-dimensional 
(3D) integrated circuits  

COMSOL settings 
 Perpendicular waves of RF module- mode analysis 
 Scattering boundary condition 

*Y. S. Bian, Z. Zheng, Optics Express 17, 21320-21325 (2009). 



School of Electronic and Information Engineering 

Dielectric-loaded SPP waveguides 

 Relatively tight confinement of light (subwavelength scale) 

 Relatively long propagation distance  ( tens of microns) 

Low-index DLSPP waveguides 
  
 Low-index polymer  
     (n~1.5)  
 Low loss 
 Relatively large geometry size  
    (e.g.600nm×600nm) 

 Not suitable for high integration 

High-index DLSPP waveguides 
  

 High-index dielectric 
     (n~2 & n~3.5)  
 Stronger confinement 
 Compact, Si fab process 

compatible, suitable for integration 

 Huge loss 
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Design of DLSPP waveguide with a holey ridge 
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*Y. S. Bian, Z. Zheng, Optics Express, To be published. 

 
COMSOL settings 
 Perpendicular waves of RF module- mode analysis 
 Scattering boundary condition 

 
 Strong field enhancement in the nanohole due to the slot effect 

Geometry 

     Field  
distribution 
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Design of dielectric-loaded waveguide with a holey ridge 
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 Even stronger field enhancement  with a shallow and wide, low-index nanohole  

 
*Y. S. Bian, Z. Zheng, Optics Express, to be published. 

 Field distributions at different nanohole widths 
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Design of dielectric-loaded waveguide with a holey ridge 

 High optical power and strong optical intensity in the nanohole 

*Y. S. Bian, Z. Zheng, Optics Express, To be published. 
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 High optical power and strong optical intensity in the nanohole 
 Loss reduction achieved with small sacrifice in the mode area 
 Improved figure of merit (FOM) with a shallow and wide air nanohole 
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Nanolasers 

The first laser (1960) 

Nanotechology 

Dielectric nanowire lasers [1]     

~ diffraction limit 

              Plasmon nanolasers  << diffraction limit 

2D [2] 3D [3] 
 
 Directional emissions 

similar to the FP lasers 
 High field confinement in 

the gain media region 
 Low-threshold operation 

 

[1] Nature 421, 241-245 (2003). 

[3] Nature 460, 1110-1112 (2009). [2] Nature 461, 629-632 (2009). 
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2D plasmon nanolasers 

Hybrid plasmonic waveguides Plasmon nanolaser 

 Low loss propagation 
 Subwavelength 

confinement  

 A lower index buffer (e.g. air) 
helps to further enhance the field 
enhancement in that region 

 An air gap is impossible to 
fabricate 

r

h

r
CdS

Ag n=-9.2+0.3i 
n=1.4 
n=2.4

MgF2
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r r
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Ag tm h r
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y
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Design of coplanar plasmon nanolaser 

 Based on an edge-coupled hybrid plasmonic waveguide 
 Strong field enhancement and low loss caused by the air gap 
 Easy to fabricate 
 Edge plasmonic mode 
 Low pump threshold 
 

 

 

               

     λ=490nm, tm=2r, h:2~30nm  

               

     Air gap 

0 

1 

               

  

*Y. S. Bian, Z. Zheng, 2010 Frontiers in Optics 
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h rrctm

1

0

Round corner effect for the plasmon laser 

*Y. S. Bian, Z. Zheng, 2010 Frontiers in Optics 

 
COMSOL settings 
 Perpendicular waves of RF module- mode analysis 
 Scattering boundary condition 
 
 

 

 

 
 
 

 A strong field enhancement occurs in the gap region 
 The enhancement is further strengthened in the center of the gap 
 The pump threshold shows a monotonical reduction with increased radius 
 Compared to the case with sharp corners, the threshold could be lowered by 50% at 

appropriate corner radius 
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Integrated plasmonic sensors w/ nanostructure 

Conventional plasmonic sensing device  

On-chip SPR sensor based on nanohole array and microfluidic    

Nature Biotech 26, 417-426 (2008) 

  Target molecular diffusion rate 
    <<Binding or reaction rate 
     Target depletion zone  

Mass transport limitation  

Colinear optical detection 
Denser integration 
Smaller footprint 
Multiplexing biosensing 
High sensitivity 
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Plasmonic lens 

Appl. Phy. Lett. 91, 061124 (2007) Nano Lett. 9, 235-238 (2009) 

Optical field gradient  

Plasmonic microzone plate lens  Plasmonic slits array lens   

Trapping and manipulating targets 

 Subwavelength focusing 
 High field intensity  
 Large field gradient 

Optical force  

Focused beam or evanescent field     

Large optical force  
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Proposed plasmonic nano-slit array 

Optimized nano-slit structure for trapping in micro-fluidic  

Divergent beam focused beam 
w1 = 250 nm w1 ,w2 = 50, 62 nm w1 ,w2, w3= 50, 62,160 nm 

Hz of TM mode 

Focal length f ~ 0.6 m 

*X. Zhao, Z. Zheng, 2010 Frontiers in Optics 

Optical  
field gradient  

Trapping and  
manipulating targets Optical force  

Focused beam or  
evanescent field     
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Optical gradient force of nano-slit lens 
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Maxwell stress tensor 

Input power density=1.28mW/mm2 

Time average optical force 

Sensing object: nanorods with a diameter of 50 nm     

When X=0, Y> f  attractive force  Y<f  repulsive force 
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Impact and effect of slit in micro-fluidic  

• Optical force could increase target concentration near focal point 
• More target molecular diffused to the sensing surface 

                      Alleviate mass transport limit 
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Conclusions 

• Design and optimization of the nanophotonic devices are 
critical in realizing advanced photonic integrations in the 
future. 

• Comsol can be used for simulating various types of 
nanophotonic devices involving different materials and 
dimensions. 

• Increased functionalities of the nanophotonic devices also 
demand simulators capable of handling complex multiphysics 
simulations. 
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                   Thank     you! 

 




