
ComsolGrid – A framework for performing large-scale parameter

 studies using COMSOL Multiphysics and the Berkeley Open

Infrastructure for Network Computing (BOINC)

Christian Benjamin Ries
1
 and Christian Schröder

1

1
Department of Engineering Sciences and Mathematics, University of Applied Sciences Bielefeld,

Wilhelm-Bertelsmann-Straße 10, 33602 Bielefeld, Germany

Abstract: BOINC (Berkeley Open Infrastructure

for Network Computing) is an open-source

framework for solving large-scale computational

problems by means of public resource computing

(PRC). In contrast to massive parallel

computing, PRC applications are distributed onto

a large number of heterogeneous client

computers connected by the Internet where each

computer is assigned an individual task that can

be solved independently without the need of

communication upon the clients. Nowadays even

small companies hold remarkable computer

resources which are not accessible as a whole but

distributed over the numerous computers which

belong to the standard working environment in

today’s companies. Over the day, these

computers are rarely operating at full capacity

and hence valuable computational power is just

wasted.

Here, we present a new approach for performing

large-scale parameter studies using COMSOL

Multiphysics based on the BOINC technology

which can be used to utilize idle computer

resources that are connected within a

companywide intranet. Based on our approach

we provide a tool chain called ComsolGrid that

allows the COMSOL Multiphysics user to define

parameter study by means of a high-level

description. ComsolGrid then automatically

performs the complete parameter study.

Keywords: BOINC, Grid Computing, large-

scale Parametric Studies

1. Introduction

With the help of BOINC [1, 6] it is possible

to create and run self-made scientific

applications heterogeneous computer networks.

However, one can also run legacy applications

like Matlab [8] by using so-called wrapper

functions within BOINC for performing

parameter studies on distributed computer

networks [2]. Based on this idea, we have

created a framework called ComsolGrid to

perform distributed COMSOL Multiphysics

(hereafter referred to as COMSOL) simulations.

The key idea is to run COMSOL simulations

with predefined parameter values on different

computers. The COMSOL simulation model and

parameter values are packed in so-called

workunits which a server computer sends to the

client computers. Each client performs a single

simulation according to the parameter set given

and returns the result to the server computer. The

BOINC project server keeps tracks of the

Figure 1: Software architecture of ComsolGrid.

Excerpt from the Proceedings of the COMSOL Conference 2010 Paris

http://www.comsol.com/conf_cd_2011_eu

workunits and checks whether each result is

valid or not (within the so-called validation

process). Validated results are stored in specified

locations on the server computer during the so-

called assimilation process.

A COMSOL simulation can be started using

the within a batch mode [7], i.e. a command-line

based program call which bypasses the use of the

common graphical user interface (GUI). The

command-line parameters in the batch mode

allow the user to control the simulation process.

For example, it is possible to define the target

processor type, i.e. 32-/64-bit architecture.

Furthermore, one can define the parameter

names and parameter values which should be

used by the COMSOL simulation. This enables

one to perform a parameter study based on one

specific simulation model by varying the

parameter values for each simulation in a

distributed computer environment. Within

ComsolGrid the complete configuration and

communication management is defined by data

structures based on the Extensible Markup

Language (XML).

2. ComsolGrid – Components,

Architecture, and Definitions

Fig. 1 shows the software architecture of

ComsolGrid and gives an overview of the

developed software components. There is one

component which describes the complete

infrastructure of ComsolGrid. Currently, only

Linux installations are supported. On the left

hand side the project server is shown. This server

is responsible for the correct handling of user

requests, the creation process of new workunits

and the validation and assimilation of completed

simulations. On the right hand side the client

environment is shown. This environment

includes the user interfaces to enable the

maintenance process; in order to create new

parameter studies and to supervise the server

system conditions clients can perform COMSOL

parameter simulations as well.

As shown in Fig. 1, there are eight

applications defined: (1) the BOINC project

itself, which is named “Comsolwrapper”, (2) a

MySQL database to store information about

users and host computers of the network, (3) an

Apache web server installation which provides

the interface to the client computers for the

exchange of information (distributing workunits,

gathering results), (4) ComsolGridFCGI which

is described in more detail in Section 2.1, (5) the

BOINC Manager providing the GUI on each

BOINC client computer, (6) the BOINC client

which performs the actual COMSOL simulation,

(7) ComsolGridStarter is an application which

enables the BOINC Manager to start, stop, and

pause COMSOL simulations, (see section 2.2),

and (8) the tool ComsolGridQt, which provides

the GUI for managing the complete parameter

study (see section 2.3).

Figure 2: Architecture of software libraries used in the ComsolGrid framework. Most of them are implemented by

the BOINC framework (indicated by the stereotype: BOINC), four libraries are external software libraries

(libhl++.so, indicated by the stereotype: System). The library libcomsolgrid.so in a composition of the core

functions which are used by all ComsolGrid applications listed at the bottom of the figure. For ComsolGrid the

BOINC Manager has been modified in order to handle COMSOL specific parameters.

The server and client processes can have two

network communication channels. One channel

is encrypted using the Secure Socket Layer

(SSL) and the other one is based on plain-text.

The BOINC clients do not need an encrypted

channel to receive new workunits. For this

purpose, BOINC has implemented a hash key

verification system. The BOINC project creates a

hash key from a combination of the user’s

personal password and e-mail address and is

only valid for one machine. Only this hash key is

exchanged between the BOINC clients and the

project server and does not enable permissions to

administrate the BOINC server. The encrypted

channel is used by the user to create new

parameter studies.

Fig. 2 shows the software architecture of the

ComsolGrid framework. At the top the BOINC

dependencies to internal and external software

libraries are shown. These libraries are used by

the software library libcomsolgrid.so.

Furthermore, libcomsolgrid.so is used by the

ComsolGrid applications which are implemented

for the ComsolGrid framework and are described

in the following sections 2.1 to 2.4.

2.1 ComsolGridFCGI – Server interface for

Parameter Studies

The ComsolGridFCGI is an interface for the

Figure 3: Architecture of the ComsolGrid wrapper: (BOINC Manager) checks for existing workunits and calls

Comsolstarter, (Comsolstarter) is our wrapper implementation, (COMSOL & Java VM) is the native COMSOL

Multiphysics application process.

user. The interface is installed on the project

server computer and is directly connected to the

MySQL database using the FastCGI library [3].

FastCGI provides an easy to use application

programming interface to implement server

applications with a full support of web

communication by plain-text communication

protocols like Hypertext Transfer Protocol

(HTTP).

Each framework user must be assigned a

correct user role. User roles are an extension to

the BOINC framework. We have defined three

roles: (1) Administrator, (2) Developer, and (3)

Scientist. Users assigned the role Administrator

can start, stop and maintain the BOINC project

server. The Developer role defines a user who

can do everything, just like a Linux root

administrator. Users assigned the role Scientist

can create and run new parameter studies; they

are allowed to define or change the COMSOL

simulation model, parameter names and values,

and they can upload this configuration to the

BOINC project server. In Section 2.4 we

describe details of the GUI which allows a high-

level description of a new parameter study.

2.2 ComsolGridStarter - BOINC Wrapper for

COMSOL Multiphysics

The ComsolGridStarter is a wrapper routine

handling the BOINC client and BOINC user

commands which are used to control a

COMSOL application. The BOINC user can

send commands using the BOINC Manager;

these commands are sent via predefined BOINC

communication channels [1]. There exists one

channel between the BOINC Manager and the

BOINC client and another one between the

BOINC client and each running scientific

application.

At the bottom of the Fig. 3, the user

commands are visualized. Any user of a client

computer can stop, resume, and abort the

COMSOL simulation on that machine. The stop

request is mapped to the Linux signal stop

(SIGSTOP). The Linux signal stop suspends one

process. Suspended processes can be resumed by

the Linux signal for continuation (SIGCONT)

and aborted by the Linux kill signal (SIGKILL).

However, in principle one can configure

ComsolGrid in a way that the simulations cannot

be controlled by the user in order to ensure that a

certain amount of computing power of a client

machine is always used for ComsolGrid

simulations.

We have implemented our own wrapper

routine since all available wrapper routines [4, 5,

6] could not handle the COMSOL process tree.

In fact, on Linux systems COMSOL internally

starts several instances of the Java virtual

machine to perform a simulation. Table 1 show

the process trees of the COMSOL major versions

3.5x and 4.x. The available wrapper routines can

only handle the process identification numbers

(PID) of the COMSOL master processes with the

PID 30521 and 15895. As a result, these

processes can be controlled by operating system

signals; however their child processes cannot be

manipulated directly by the BOINC Client. As a

consequence we have implemented a bridge

between the BOINC client and the COMSOL

process tree. Fig. 3 describes three processes: (1)

BOINC Manager, (2) Comsolstarter, and (3)

COMSOL & Java VM. The first one is

responsible for the communication between the

BOINC user and the BOINC client and starts the

ComsolGridStarter for performing a simulation

based on a given workunit. The second one is the

most important and more complex process.

ComsolGridStarter first checks for a valid

COMSOL installation on the client computer and

then executes it. It is necessary to start the

correct version of COMSOL, because the model

files are usually not downward compatibly with

other COMSOL major version, i.e. a COMSOL

model of the major version 4.x cannot be opened

by COMSOL version 3.x. The routine

IntializeComsol() starts a COMSOL process and

passes its PID to the routine

HandleBOINCStuff(). HandleBOINCStuff() polls

the state of the internally started Java virtual

machines when it becomes valid. The term valid

means that the PID of the Java virtual machine is

available, e.g. table 1 shows the required PIDs:

(1) comsol_java_pid= 30674 for the process

named java, and (2) comsol_java_pid=15919

for the process named comsollauncher. If one of

them becomes valid, the PID is stored for later

use by the handler of the user commands. The

wrapper runs until the COMSOL process is

finished. With these PIDs, the complete

COMSOL process becomes controllable.

During runtime, the wrapper tries to retrieve

information about the progress’ progress and

sends the value to the BOINC Client. This value

is then transferred to the BOINC Manager and

displayed as shown in fig. 4.

The third process on the right hand side in

fig. 3 shows the native COMSOL process. When

it starts, it forks the COMSOL process and the

simulation execution is supported by Java virtual

machines.

Figure 4: Progress in percent of one COMSOL

Multiphysics simulation.

Our wrapper routine is fully configurable

using an XML configuration file. It is possible to

define the current processor architecture or

which license should be used. In addition, we

can map the output and input channels to files,

i.e. for debugging purposes.

2.3 ComsolGridQt – User interface for

COMSOL Multiphysics user

We have implemented a GUI ComsolGridQt

which provides a tool that enables the user to

define a new parameter study by means of a

high-level description. As shown in fig. 5 the

GUI guides the user through the process of

creating a complete parameter study. When run

for the first time, the user must add the

authentication data, i.e. user name, e-mail

address, and password. In the next step it is

necessary to define the web address of the server

interface ComsolGridFCGI, e.g.

127.0.0.1/comsolfcgi. After that basic

information about the project server is requested;

the user receives a list of the available BOINC

projects, data of the server condition, and

information of the supported COMSOL versions

and plattform.

The GUI includes some well-defined

elements for adding COMSOL specific

simulation model files, changing the order of

these files, and adding the BOINC input/result

template files. These files contain XML

structures. When a new model is added, the GUI

automatically determines the parameter names

which are defined in the model and adds these

names as column descriptions to a table in the

Parameter tab. After that the user can define

parameter values for each parameter name. After

every change of these values, it is automatically

checked whether the values are valid or not. Four

values are required for a valid state. The format

string of these values is:

“START:STOP:STEP:DEFAULT”
This format is modified with regard to the

COMSOL range(…) function. Each of these

values can keep one data item as a floating-point

value. The user can add arbitrarily many new

rows of data items.

The input template and result template files

are not generated but must be created manually.

In our cases, we are using only one COMSOL

simulation model for each parameter study with

different parameter ranges. As a result of this, we

have only two files and reuse them for each new

parameter study.

Table 1: Example of a process tree of the two COMSOL Multiphysics major versions: (1) 3.5x, and (2) 4.x.

(1) COMSOL Multiphysics 3.5x process tree:

su(30443) --- bash(30452) --- comsol(30521) --- java(30674) -+- {java}(30675}

 |- {java}(30676)

 `- …

(2) COMSOL Multiphysics 4.x process tree:

su(13564) --- bash(13576) -+- comsol(15895) --- comsollauncher(15919) -+- {comsollauncher}(15020)

 | |- {comsollauncher}(15021)

 | `- …

Fig. 6 shows an example for a complete

specification of a workunit. As one can see, the

workunit uses three external components: (1) the

COMSOL model file (*.mph), (2) the Input

Template file, and (3) the Result Template file.

The Input Template file defines the set of the

COMSOL simulation files, the according file of

the parameter values and the BOINC logical

names of these files, e.g. comsol.mph, and

comsol.txt (described later). It does not matter

which name a COMSOL simulation file has been

assigned, it is always mapped to the name

comsol.mph. The comsol.txt file contains the

parameter values.

Figure 6: Components of a ComsolGrid workunit

Each row of this file describes a set of parameter

values separated by tabulators. The file

comsol.txt is created for each workunit by

ComsolGridFCGI whenever ComsolGridQt

uploads a new parameter study from the server.

2.4. ComsolGrid Validator and Assimilator

Two more applications are needed for the

complete simulation process, namely the

comsol_bitwise_validator and

comsol_copydir_assimilator. Both applications

are basically copies of the original BOINC

validator and assimilator functions. The validator

is responsible for checking whether or not a

maximum processing time is reached or whether

two results for the same workunit parameters are

equal; if so, the result is valid, otherwise it is not

valid and will be discarded. This procedure is a

standard check used for public projects but can

be dropped completely for projects using

trustworthy computer networks like company

intranets. The assimilator copies all valid results

to a specified target directory that is accessible

by users assigned the role Scientist.

Figure 5: The GUI ComsolGridQt provides a high-level description of a parameter study: (1) select the available

BOINC project, (2, 3, 4, 5) select, add, and arrange COMSOL Multiphysics files and define the according parameter

data ranges using the Parameter tab, (6, 7) add the input template and result template file, and (8, 9) check your

configuration and upload the files and parameter data ranges to the BOINC project server.

3. Proof of Concept

We have set up a test installation and

successfully performed a parameter study using a

number of workunits. For this installation, we

exported one COMSOL installation by using the

Network File System (NFS) to other computers.

The computers are equipped with the BOINC

Client and BOINC Manager software only. Each

machine is registered to the above mentioned

BOINC project “Comsolwrapper”. Whenever a

BOINC client requests a new workunit, the

BOINC project searches for parameter values

that have not been processed already, and sends

these in form of a workunit to the requesting

BOINC client.

Our test installation uses the model library

example falling_sand.mph, which is provided by

the COMSOL default installation (Model

Library / COMSOL Multiphysics / Fluid

Dynamics / falling_sand). We have added two

parameter names for the test study. Fig. 7 shows

the parameter names: (1) objWidth, and (2)

objHeight.

Figure 7: COMSOL Simulation model with the two

parameters (1) objWidth, and (2) objHeight used for a

parameter study with ComsolGrid.

The parameters have values ranging

between 0.001 to 0.015 with a step size of

0.0005 for objWidth and 0.001 to 0.025 with a

step size of 0.001 for objHeight. Currently there

is no multiple variation scheme implemented; i.e.

when one parameter is varied, the other

parameters are fixed. We have created 54

workunits that have been validated using the

bitwise validator which needs two results.

Therefore, a total of 108 workunits have been

processed by the client computers.

The parameter study took approximately 209

minutes with a success rate of 95 percent per run.

It is feasible to reach 100 percent, but in our case

five percent have been lost due to a malfunction

of one computer where an X11 process has

crashed.

4. Conclusions

In this article we have presented a new

approach to perform large-scale parameter

studies with COMSOL Multiphysics on a

heterogeneous computer network using a tool

chain based on the public resource computing

framework BOINC. Our ComsolGrid approach

enables one user to create parameter studies with

an easy to use GUI. The implementation of our

wrapper routine is very generic and therefore

usable with other legacy applications as well.

Further work is focused on the realization of a

version for Mac OS X and Windows.

8. References

1. D. P. Anderson, C. Christensen, and B. Allen,

Designing a Runtime System for Volunteer

Computing, UC Berkeley Space Sciences

Laboratory, Dept. of Physics, University of

Oxford, and Physics Dept., University of

Wisconsin - Milwaukee (2006)

2. O. Baskova, O. Gatsenko, G. Fedak, O.

Lodygensky, and Y. Gordienko, Porting

Multiparametric MATLAB Application for Image

and Video Processing to Desktop Grid for High-

Performance Distributed Computing,

International Supercomputing Conference (ISC),

Hamburg, Germany (2010)

3. M. R. Brown, FastCGI Specification, Open

Market, Inc., 245 First Street, Cambridge, MA

02142 U.S.A, April, 1996, URL:

http://www.fastcgi.com

4. D. Gonzales, F. Vega, L. Trujillo, G. Olague,

M. Cardenas, L. Araujo, P. Castillo, K. Sharman,

and A. Silva, Interpreted Applications within

BOINC Infrastructure, May (2008)

5. A. C. Marosi, Z. Balaton, and P. Kacsuk,

GenWrapper: A Generic Wrapper for Running

Legacy Applications on Desktop Grids, 3
rd

Workshop on Desktop Grids and Volunteer

Computing Systems (PCGrid 2009), Rome, Italy

(2009)

6. BOINC – Open-source software for volunteer

computing and grid computing, URL:

http://boinc.berkeley.edu

7. COMSOL Installations and Operations Guide,

Version 3.5a, 4.0, 4.0a, included in COMSOL

Multiphysics installations

8. MathWorks, Accelerating the pace of

engineering and science,

http://www.mathworks.com

