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Introduction: Atomic Layer Deposition (ALD)

What is ALD? Temporal ALD

* Thin film deposition technique praised for high quality, OH surface +
conformal, dense films with atomic level thickness Al(CH,),: &; CH, surface:
control ? v &)\' /.% CH,

Critical Features: (‘-‘—u—m‘ PHree '

= Sequential exposure of surface to saturating precursors

" Low growth rates (0.1 nm/s) i FH,0 B

= Vacuum process OH surface,
repeat Al(CH;);

Applications:
"  Semiconductors purge
= Solar Cells h

= Optical Filters

cycle

B
o

N. Parsons, Gregory & George, S.M. & Knez, Mato. (2011). Progress and future directions for atomic layer deposition U c U N N

and ALD-based chemistry. MRS bulletin / Materials Research Society. 36. 865.10.1557/mts.2011.238
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Introduction: Spatial ALD

Why Spatial ALD? Spatial
" Ultra-fast, uniform thin films deposited at low temperatures

" Industrially viable, high-throughput processing

Critical Feature of Spatial ALD Reactors:

= Successful spatial separation of the precursors

Pre?ulr:torA Gub:adng .
Types of Spatial ALD Reactors: Gos baaring — ‘ :
" Roll-to-Roll (Flexible Substrates) ! Ly head
* In-line deposition head (Sheet-to-Sheet) g_*m
= Rotary stage (Batch Processing) R y pell
y stage (B g i ) Bl

Poodt et al. (2012) J. Vac. Sci. Technol.
http:/ /www.solaytec.com/ U c U N N
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Overview: Air Hockey Reactor

substrate

Operation: Yy )
" The vents in the deposition region suspend the substrate on *M’ ‘M’ '\mf‘ W}ﬂ' "M‘ ,‘ [__\“\[’ﬁ

a bed of fluid |
N,(9) l TMA l N(9) J H,0 l N,(9)

" Precursor separation is achieved through a barrier gas stream
placed between the precursor vents exhaust ~ exhaust  exhaust  exhaust

u Atmospheric pressure operation

Challenges:

" The deposition gap is a function of the flow parameters Motivation and Approach:

. . . .. * Develop a model to predict the flotation height
" Deposition gap 1s critical to prevent precursor mixing

* Investigate how different operating conditions
affect precursor separation and utilization

R
Mg = f 2nr(p — pg)dr
0
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Part I: Flotation Height
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Summary — Poster Session

Porous Table Surface Pressure Surface Pressure
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Hypothesis: The air hockey table will behave according to the porous table model at the limit of an infinitely sized

array with infinitely small vertical jets

Visit my Poster — Thursday 6:00-7:00PM for more detailed information
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Part I11: Diffusion Model
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Diffusion Model Definition

Substrate L
1 Deposition [ead Reactor:

RHIARIR

Al parameters are set

J

Air Hockey Reactor:

A =  Force balance determines N, flow
rate

|1v2 1 VN, + H,0 + N,

ecessed - Air Hockey Reactor:
= Different geometry; identical
operation

Exhaust Vents
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Deposition Head Reactor (DHR)

Precursor Deficient Regime

500 . .
1 CVD Regime:
450 .
1095 ®  Targe deposition gaps
50 ml/min —amh :
ml/min {00 ¢ " Low barrier gas flow
E 350 E
= 1085 3
: L]
§ 300 | . S ALD Regime:
[ ' ] ..
S s, £ ®  Small deposition gaps < 200 um
@ 0.75 2
b . [ . .
S 200 § " Barrier gas flow > 250 ml/min
v = 0.7 ?é
=
500 ml/min —T50 .
065 Precursor Deficient:
100
0.6 " Low precursor tlow
50 .
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Precursor Flow Rate (ml/min)
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Air Hockey Reactor (AHR)

d =50 um
Qpre = 100 ml/min

Precursor Deficiency:

Maximum Water Surface Percent

Sensitive to deposition height and

precursor flow rate
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Recessed — Air Hockey Reactor (R-AHR)

» Identical Operation to AHR with improved ALD regime in small deposition gap [ 1 il J

" The recessed region diminishes the force contribution from the precursor flow

= Effect increases with increasing depth
H,0 Surface

" Tradeoff is low precursor surface concentration, greater barrier gas flow ]
0SS
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Part II1: Precursor Utilization
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Defining Precursor Utilization

= Diffusion model alone does not adequately quantify What is it missing?

precutsor efficiency 1. Precursor adsorption surface reaction

" The surface reaction consumes precursor during operation s Surface limited reaction

2. Substrate translational motion
Fin = Four + En

" Introduction of unreacted surface

3. Time dependency

" Define precursor utilization based on unreacted precursor

Na = (1 ~ Fg’”) x100 Ra(t,X) = kaqsSo(1 — 64(t,x))Cy
IN

R4 = Surface Reaction Rate

Is it possible to define a stationary kaas = Acésor]ftioréRa;jec Constant
So = Sticking Coef ficient

8, = Surface Coverage of A

C4 = Bulk Concentration of A

model to quantify precursor utilization?
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Proposed Stationary Method

- S S S S S S e B e B e R

CSTR in Series

Method:

Simulate space-dependent model with global
model of large N CSTR 1n sertes

Map time domain to space domain for surface
coverage

Oaas(t, x) = Oa45(x)
R,(t,x) > Ry(x)

Solve space-dependent transport of species and
laminar flow interfaces

Calculate precursor efficiency
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Hypothesis
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= FHach set of initial conditions will result in a different = If the initial concentration is too high, all unreacted
expression for 8(x) precursor will leave through the outlet

" This will adjust the reaction rate and solve for = Lowers precursor utilization

concentration " Increasing deposition gap
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Conclusions/Future Work

Conclusions:

DHR: Both CVD and ALD Regimes

AHR: Sensitive to process parameters at low deposition gaps

R-AHR: Diminishes precursor force contribution, tradeoff with surface concentration
Without surface reactions, precursor utilization can not be determined

Current focus 1s on improvement of precursor efficiency

Future Work:

Experimentally validate operating regimes through stationary deposition
Quantitatively compare reactor type efficiency

Use computational study as baseline for scaling air hockey table spatial ALD reactor
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