Coupling of COMSOL and the Geochemical Modelling Framework PHREEQC

COMSOL Conference 26th October 2011 **Stuttgart, Germany**

Dr. Laurin Wissmeier laurin.wissmeier@hydrosconsult.de

Fields of Application

- Water resource management and pollution control (e.g., pesticide behaviour)
- Agricultural management (e.g., drip irrigation, fertigation)
- Remediation designs and contaminated site clean-up (e.g., bauxite residue management)
- Risk assessment for hazardous waste disposal (e.g., nuclear waste disposal)
- Scientific tool to investigate coupled geophysical, geomecanical and geochemical processes (e.g., CO₂-sequestration)

PHREEQC

Open source geochemical modelling framework developed by USGS

- Activity corrected solution speciation
- Surface complexation and ion exchange adsorption models
- Kinetic and equilibrium mineral reactions
- Redox reactions
- Gas phase exchange
- Kinetic organic and biotic processes
- Comprehensive geochemical databases

Component-Based Aqueous Phase Flow

Flow, transport and reactions

Richards' equation: Phase mass balance

$$\frac{\partial \rho}{\partial a_{t}} \left(\sum_{i} n \nabla n_{i} \right) + \overline{\rho} \frac{\overline{k}}{\mu} \nabla \rho \left(* \sum_{i} \nabla g \nabla n_{i} \right)_{i} \right) + \nabla \cdot \left(\sum_{i} \nu j_{i} \right)$$

Advection-dispersion equation: Component mass balance

$$\frac{\partial \theta \, \partial n_i}{m_i} = \nabla \nabla (\nu (\partial n_i) n_t \nabla + (\nabla \overline{D} \nabla c_i))$$

Equilibrium solution speciation: Mass action

$$n_i = \frac{K_i W_{aq}}{\gamma_i} \prod_e \mathcal{A}_e^{-s_{e,i}}$$

Model Verification

Model Verification

Simulation of Bauxite Residue in Field Conditions

Geochemical Model

Mineral composition

Mineral	Equilibrium constant	Rate constant (mol m ⁻² s ⁻¹)	Relative amount (mol kg _{solid} ⁻¹)
Calcite	10 ^{-8.48 a}	-	2.53×10^{-2}
Natron	10 ^{-1.31 a}	-	3.99×10^{-2}
Muscovite	10 ^{14 b}	-	2.51×10^{-2}
Analcime	10 ^{6.72} a	-	3.05×10^{-2}
Sodalite	10 ^{-55.89} c	3.41×10^{-9}	4.24×10^{-3}
TCA	10 ^{74 d}	$7.48 imes 10^{-10}$	5.57×10^{-3}

Fertilizer minerals

Mineral	Relative amount (mol l _{soil} -1)
DAP	5.67×10^{-3}
Arcanite	2.41×10^{-3}
CuSO ₄	$1.50 imes 10^{-4}$
Zincosite	1.41×10^{-4}
MnSO ₄	1.55×10^{-5}
MgSO ₄	1.10×10^{-3}
Borax	2.62×10^{-5}

Adsorption model

Cation	Relative amount
exchanger	(eq kg _{solid} ⁻¹)
X-	8.6 × 10 ⁻³

^a minteq.dat (distributed with PHREEQC)
^b sit.dat (distributed with PHREEQC)
^c calculated from thermodynamic data in Komada et al.
^d from Khaitan et al.

Amendment

Mineral	Relative amount (mol l _{soil} -1)
Gypsum	1.10×10^{-1}

Boundary Conditions

Atmospheric boundary including evaporation and recharge:

$$q_{0} = \begin{cases} -r(t) \tanh\left[\frac{\xi}{r(t)}(H_{0} - H_{crit})\right] & r(t) < 0\\ r(t)\mathcal{H}(H_{po} - H_{0}) + [r(t) - k_{po}(H_{0} - H_{po})]\mathcal{H}(H_{0} - H_{po}) & r(t) \ge 0 \end{cases}$$

Lysimeter Simulation

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.05

0.1

Thank you for your attention!

For more information, please contact:

Dr. Laurin Wissmeier Bertoldstraße 61 79098 Freiburg Tel.: 0761/211 138-24 Fax :0761/211 138-29 http://www.hydrosconsult.de laurin.wissmeier@hydrosconsult.de

Literature

- Wissmeier, L. and Barry, D.A., 2011. Simulation tool for variably saturated flow with comprehensive geochemical reactions in two- and three-dimensional domains. Environmental Modelling & Software, 26(2011): 210-218.
- Wissmeier, L., Barry, D.A. and Phillips, I.R., 2011. Predictive hydrogeochemical modelling of bauxite residue sand in field conditions. Journal of Hazardous Materials, 191(1-3): 306-324.
- Wissmeier, L. and Barry, D.A., 2010. Implementation of variably saturated flow into PHREEQC for the simulation of biogeochemical reactions in the vadose zone. Environmental Modelling & Software, 25(4): 526-538.
- Wissmeier, L. and Barry, D.A., 2009. Effect of mineral reactions on the hydraulic properties of unsaturated soils: Model development and application. Advances in Water Resources, 32(8): 1241-1254.
- Wissmeier, L., Brovelli, A., Robinson, C., Stagnitti, F. and Barry, D.A., 2009. Pollutant fate and transport in the subsurface, Modelling of Pollutants in Complex Environmental Systems. ILM Publications, pp. 99-143.
- Wissmeier, L. and Barry, D.A., 2008. Reactive transport in unsaturated soil: Comprehensive modelling of the dynamic spatial and temporal mass balance of water and chemical components. Advances in Water Resources, 31(5): 858-875.