

Multiphysics modeling of a gas bubble expansion

Bruno Chinè^{1,2}, Michele Monno^{1,3}

¹ Laboratorio MUSP, Piacenza, Italy; ² ITCR, Cartago, Costa Rica; ³ Politecnico di Milano, Italy

bruno.chine@musp.it

2011

Stuttgart, October 26-28, 2011

Presentation overview

- Introduction, metal foams
- Bubble expansion model
- Simulations by Comsol Multiphysics
- Results
- Conclusions

Comsol Conference 2011, Stuttgart

Metal foams

Uniform gas-liquid mixture (gas-metal or gas-alloy) in which the volume fraction of the liquid phase is small (10-20%: wet foam, <10% dry foam)

D.J. Durian (UCLA): ...a random packing of bubbles... or ...a most unusual form of condensed matter...

solidification

solidified metal foam

Comsol Conference 2011, Stuttgart

Process and bubble growth

Shaped mould

Shaped container

____ Extruded alloy bar or plate (containing foaming agent)

chopping of the precursor material in small pieces

- placing inside a sealed split mould
- heating to a temperature a little above the solidus temperature of the alloy
- foaming agent decomposition and foam formation
- cooling and extraction

Comsol Conference 2011, Stuttgart

A bubble expansion model

The model starts from a previous work of the same authors, who simulated a bubble growth with Comsol, modelling the bubble as a disk in 2D.

Now we extend the model to a spherical bubble in 3D, applying after axial symmetry condition to reduce the computational effort.

Moreover, more realistic values of surface tension, density and viscosity are set for the H_2 -aluminium system.

In order to obtain convergence: a step function for the initial pressure difference in the system and mesh refinement for the transient solution are introduced in the model.

A bubble expansion model

Starting with a spherical bubble in 3D and using a system of cylindrical coordinates (r_{AX}, φ, z) and axial symmetry around z:

⇒ 2D

since r_{AX} is also a symmetry axis, we study the region: $0 \le r_{AX} \le R_{\Omega}$, $0 \le z \le R_{\Omega}$

- transient bubble expansion
- isothermal, no mass diffusion: growth is only driven by a pressure difference, surface tension σ effects are considered
- gas follows the ideal gas law $pV = n\Re T$ liquid is incompressible, fluids are immiscible

Comsol Conference 2011, Stuttgart

Level set interface

Equation for gas density

gas density is modelled as:

$$\rho_G(t) = \frac{\rho_{G,0}}{\left\{1 + \frac{1}{4\eta_L} \left[p_{G,0} - (p_{EXT,0} + \frac{2\sigma}{R_0})\right]t\right\}^3}$$

 η_L , dynamic viscosity of the liquid

(Gniloskurenko et al., 2002)

depending on the values of $p_{G_{-}}p_{EXT_{-}}\sigma$, R_0 and η_L , the expansion could be very fast

by means of Gniloskurenko eq., a gas bubble with $R_0 = 0.01$ m, would obtain an **interface velocity** of ~ 0.25 m/s for a pressure difference of 10 Pa and $\eta_L = 10^{-3}$ Pa·s

→ R= 0.02 m in 0.04 s

Laboratorio MUSP

Comsol Conference 2011, Stuttgart

R

Simulations: properties and parameters

Magnitude	Symbol	Value
Universal gas		8.314 J/(mol·K)
constant		
Gas molar mass	М	2 g/mol
Gas density	$ ho_G$	ideal gas and eq. of
(Hydrogen)		Gniloskurenko et al.
Liquid density	$ ho_L$	10 kg/m ³
(Aluminium)		2.4 kg/m^3
Gas viscosity	η_G	10 ⁻³ Pa·s
Liquid viscosity	η_L	10 ⁻¹ Pa⋅s ←
		4.5x10 ⁻³ Pa⋅s
Surface tension	σ	0.95 N/m
coefficient		
Initial bubble radius	R_0	10 ⁻² m
Initial bubble	$p_{G,0}$	400 Pa
pressure		190.1 Pa
Ambient pressure	p_{EXT}	0 Pa
Constant temperature	Т	933 K

$\Rightarrow \max \frac{\rho_L}{\rho_{G,0}} \cong 9x1$	04
--	----

Comsol Conference 2011, Stuttgart

Magnitude	Symbol	Value
Max element size of the mesh	-	10 ⁻⁴ m
Time stepping	-	set by the solver
Relative tolerance	-	10 ⁻³ s
Absolute tolerance	-	10 ⁻⁴ s
Interface thickness	3	8x10 ⁻⁵ m
Reinitialization	γ	0.5 ÷ 5 m/s

mesh: $8x10^4$ triangle elements

 $5x10^5$ DOF

DirectsolverPARDISO(ComsolMultiphysis 4.2) stepsize = $10^{-3} \div 10^{-5} s$, solutiontime $\cong (2 \div 3) \times 10^4 s (f(t_{fin}))$

bubble expansion

$$p_{G,0} = 400 \,\text{Pa}, \ \rho_L = 10 \,\text{kg/m}^3, \ \mu_L = 10^{-1} \,\text{Pa} \cdot\text{s}$$

Volume fraction of hydrogen: time 0.001 [s]

bubble expansion

$$p_{G,0} = 400 \,\text{Pa}, \ \rho_L = 10 \,\text{kg/m}^3, \ \mu_L = 10^{-1} \,\text{Pa} \cdot\text{s}$$

bubble expansion

$$p_{G,0} = 190.1$$
 Pa, $\rho_L = 10$ kg/m³, $\mu_L = 4.5 \times 10^{-3}$ Pa.s

bubble expansion

$$p_{G,0} = 190.1$$
 Pa, $\rho_L = 2.4x10^3$ kg/m³, $\mu_L = 4.5x10^{-3}$ Pa.s

Volume fraction of hydrogen: time 0.006 [s] $\times 10^{-4}$ **1** 0.9 40 0.8 z coordinate [m] 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0.008 0.012 0 rAX coordinate [m] ▼ 0

$$v = \frac{\mu}{\rho} \cong 1.9 \times 10^{-6} \text{ m}^2/\text{s}$$

Re $\cong 293$

Comsol Conference 2011, Stuttgart

bubble expansion

$$p_{G,0} = 190.1$$
 Pa, $\rho_L = 2.4x10^3$ kg/m³, $\mu_L = 4.5x10^{-3}$ Pa.s

utgart

Laboratorio MUSP

Comsol Conference 2011, Stuttgart

Conclusions

- The model computes bubble expansion with flow in gas and liquid regions. Gas pressure drives the growth.
- A weakly-compressible model, coupled to a level set equation, allows to capture the interface. Surface tension for the system H₂- aluminium is considered.
- Realistic values of densities and viscosities for both the H₂ and the aluminium are set: step function for the initial pressure difference in the system, and mesh refinement for the transient solution are used.
- To improve our future work, we foresee:
 - to include mass diffusion and heat transfer in the model;
 - to take into account more bubbles in the system in order to consider their interactions.

References

- B. Chinè and M. Monno, A model of gas bubble growth by Comsol Multiphysics, *Proceedings* of 2010 European Comsol Conference, Paris, 2010.
- J. Banhart, Manufacture, characterization and application of cellular metals and metal foams, *Progress in Materials Science*, **46**, 559-632 (2001).
- S. Osher and J.A. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulation, *Journal of Computational Physics*, **79**, 12-49 (1988).
- Comsol AB, Comsol Multiphysics-CFD Module, *User's Guide*, **Version 4.2**, 201-264 (2011).
- S.V. Gniloskurenko, A.I. Raichenko, T. Nakamura, A.V. Byakova and A.A. Raichenko, Theory of initial microcavity growth in a liquid metal around a gas-releasing particle. II. Bubble initiation conditions and growth kinetics, *Powder Metall. And Metal Ceramics*, **41**, N.1-2, 90-96 (2002).

Many thanks for your attention.

Thanks also to the organizers of

Comsol Conference 2011, Stuttgart