

Svenn Anton Halvorsen, Nora Kleinknecht: An Improved Model for High Temperature Inductive Heating

2011 COMSOL Conference

Stuttgart

Inductive Heating Improved Model

- Multiphysics model
 - Heat Transfer
 - ODEs and DAEs Simplifications, constraints, control
 - Magnetic Fields "Complex pollution" of real variables
 - Solid Mechanics Thermal stresses, displacements
- Improvements and experience
 - Model improvements
 - COMSOL versions 3.4, 3.5a, 4.0a, 4.1, 4.2
 Some problems, experience, improvements
 - Case studies, current control

Inductive Heating Improved Model

- Multiphysics model
 - Heat Transfer
 - ODEs and DAEs Simplifications, constraints, control
 - Magnetic Fields "Complex pollution" of real variables
 - Solid Mechanics Thermal stresses, displacements
- Improvements and experience
 - Model improvements
 - COMSOL versions 3.4, 3.5a, 4.0a, 4.1, 4.2
 Some problems, experience, improvements
 - Case studies, current control

High Temp Inductive Heating Axially Symmetric Model

Lid

Void

Liquid [•]

Support

۲

- Case study: Melting
- Non-conductive liquid
 - Crucible heated by induction
- Conductive liquid (metal)
 - Non-conductive crucible

Multiphysics Heat Transfer

- Crucible, lid, insulation, support
- Induced power
 Electromagnetics
- Outside: Boundary conditions
- Inside: Couple to void and liquid

Multiphysics, ODEs and DAEs, Discrete state variables

- Material balance:
 - Solids
 - Liquid
- Heat balance: Void

 Radiation
- Heat balance: Liquid
 - Convective heat transfer, radiation
 - Melting
- Can be far more complex

Multiphysics Magnetic Fields

- Power distribution – Input to heat equation $Q_{\rm rh} = \frac{{\rm Re}({\bf E} \cdot {\bf J}^*)}{2}$
- AC, frequency domain
 - Complex fields
 - Re(z) non-analytical (no derivative!)
 - Non-linear solver applies
 Jacobian (derivatives)

Magnetic Fields Coupling to Heat Transfer

- Previously
 - Pseudo Jacobian
 - BUT: "Complex pollution" (small imaginary components)
 - Temperatures
 - Mechanical stresses
 - ...
 - Computational problems!
- From version 4.1
 - Ignore Jacobian information (magnetics \rightarrow heat transfer)
 - Segregated solver
 - OK for weak couplings

• Equation for I_{coil}

Total induced power = Set point value or A computed T = Set point value

- v 4.0a: Pseudo Jacobian
 - Phase angle is undetermined, but get "Solution" !
 Dynamic problems !
 - Fix: Modify equation
- v 4.1: No Jacobian info
 - One missing equation
 - No computations

• Equation for I_{coil}

Total induced power = Set point value or A computed T = Set point value

 Quadratic dependence, move I_{coil} "outside" electro-magnetics

$$Q_{\text{induced}} = I_{\text{coil}}^2 Q_{\text{rh}}$$

Input to the Due

heat equation

Due to 1 A/m coil current

- Latest info from COMSOL Version 4.2a
 - Declare fields as complex or real
 - Split AC (complex) fields into real and imaginary parts (at solver level)
 Equivalent to using real valued sine and cosine terms
 - Constrain phase of ODE (feedback control) variables

Multiphysics Solid Mechanics

- Crucible only
- Insulation is soft
- Example: Stress in the angular direction
 - Deformation, relatively to expansion at 850 °C
 - Scaled 50 times

Multiphysics Solid Mechanics

ar seconds	
✓ Expression	
x component:	
u-r*Alpha_Cru*(850[degC]-Tempref)	m
y component:	
w-z*Alpha_Cru*(850[degC]-Tempref)	m
Description:	
▼ Scale	
Scale factor: 🗹 50	

Multiphysics Solid Mechanics, Settings v 4.2 teknova

Settings	 Structural transient
► Interface Identifier	behavior:
Domain Selection	– Quasi-static
Selection: Crucible	
Equation Structural Transient Behavior Structural transient behavior: Quasi-static	 Advanced Settings Uncheck: Displacements control spatial frame
Reference Point for Moment Computation	
▼ Advanced Settings	
Show all model inputs	
Displacements control spatial frame	
Discretization	

Improvements

- Quasi-stationary melting: Slow process, drop d/dt terms
 - Significant: Heating and melting of solids
 - Insignificant: Change of local T, T_{lig} , T_{void}
 - Required:

charging/input rate = melting rate

- Conductive or non-conductive liquid
- Far more complex dynamics
- Control: specified power or temperature, combined (power plus proportional T-control)

Conclusions

- Model for High Temperature Inductive Heating
 - Previously: Successfully developed
 - Successfully migrated
 - From version 3.4
 - Via versions 3.5a, 4.0a, and 4.1
 - To version 4.2
 - Successfully improved
- COMSOL Multiphysics is a suitable tool

Acknowledgement

- Thanks for financial support to:
 - Aust-Agder county
 - Vest-Agder county
 - The Competence Development Fund of Southern Norway