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Problem Statement

Let Q C R? be simply connected bounded Lipschitz domain. The set
K={veH}Q) |Vv|<1ae. inQ} is non-empty, convex and closed in H}().
For a given f € H71(Q) we treat the variational inequality :

Problem
To find a solution u € K such that

AVWW—MWZWW Vv e K. (1)

This variational inequality can equivalently be formulated as a gradient
constrained minimization problem:

Problem
To find a solution u € K such that

J(u) = VmGiEJ(v)

where

KW=%AWWW—Aﬁw- )

»
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Regularization

@ We replace constraint |Vu| <1 with the equivalent constraint |[Vu|?> <1
@ The formal Lagrangian for the problem :

f(v,ﬁ,):%/Q|Vv|2dx—/9fvdx+/nl(|Vv|2—1)dx.

Now if u* denotes a solution (the existence of which we know) then the formal
Karush-Kuhn-Tucker (KKT) conditions for a Lagrange multiplier 1* is:

/(1+2)L*)vu*v\/dx: (Fv) Vv e HY(Q)
Q
A*>0, |Vu?—-1<0, (A%|Vu']?-1)=0 (3)

This system has a nonlinear structure and we want to use the Newton method for
solving it. Since with the last row it is impossible to apply Newton method we
reformulate the optimality system in the following way:

(Vu*,Vv)+2(A*,Vu*-Vv) = (f,v) Vv e HY(Q),
A* = max(0,A* + c(|Vu*|? - 1)) (4)

where ¢ > 0 is fixed and the max-operation is defined pointwise.
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Newton differentiability
Definition
The mapping F: D C X — Z is called generalized differentiable (Newton

differentiable) on the open subset U C D if there exists a family of generalized
derivatives G : U — L(X,Z) such that

Jim i IFGeEB) — FG0 = Glx A =0,

for every x € U.

4

For 6 € R we introduce the following candidate for its generalized derivative of the
form:
1 if u(x)>0
Gs(u)(x)=< o if u(x)=0
0 if u(x)<0.

Lemma

The mapping max(0,-) : L9(Q2) — L"(Q) with 1 <r < q <o is Newton
differentiable on L9 and Gg is a generalized derivative.
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Semismooth Newton method

We use the augmented Lagrangian method for solving of the constrained
minimization problem: we solve the sequence of unconstrained minimization
problem with the objective functional

1
9= [ s, o577

to be minimized over the space H}(Q).
Further, in order to obtain the Newton differentiability we modify the problem: for
€ > 0 sufficiently small we look for uye € H?(2) N H3(2) minimizer of the
functional ¢

Jpe(v) = S (VY 4+ Jy(v)

over the space H?(Q)N H(R).
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Semismooth Newton method

Problem
Find uye € H*(Q) N H(2) such that

e(Auye, Av) + (Viye, Vv) + (Aye, Vuye - Vv) = (f,v) Vv e HX(Q)NH3(Q),
Aye = 2ymax(0, |Vuye|? —1)).

For the semismooth Newton method the linearization of the nonlinear operator
equation F(u) =0 has the form

DF (u"§u = —F(u),

where DF is the Newton derivative of F, du is the update for u.
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Semismooth Newton method
The use of the method leads to the following variational equation at the Newton

iteration:
/Au(k+1 Av+/a(k k+1)Vv /g Vuy )Vv—i-/ fv,
Vv € HA(Q)NHL(Q) (5)
where
a®) = (142929 . (IVul® )2 — 1)1+ 4y OVl o v,
with
|- 10
|0 1)”
and

£ = s v
Here the characteristic function
) L if V()] 2 1
25 (x) =
0 if |VulR(x)| <1
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Algorithm

Algorithm 1 Semismooth Newton Method

(0)

L. ¥:="%, choose uy¢, choose € >0
2. o) = ug,?g
3: while not converged do

4:

© ® N9

10:
11:
12:
13:
14:
15:

k=0

Set oyo={x€Q:|VulI]2>1}

while not converged do
k=k+1
solve (5) for uy,
Ay k41 = {X € Q |Vu(k+:l > > 1}
if %%;(4,1 = ﬂ%k then

STOP

end if

end while
U(C) = u;ke)

increase Y

(k+1)

16: end while
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Numerical results: Example 1

Teip[ /|Vv|2dx d/ ]

K={cH}Q): |Vv|<lae. inQ}
with d =5 and

Q={xeR? x=(x1,x), xt+x3<1}.

@ The continuation method is initialized by zero.

@ The stopping condition for the Newton
iterations is ||| u**)|| — [|u(®]]| < 1071, where

lull = (JolAuP)3.
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Numerical results: Example 1
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Figure: Convergence results for the triangulation mesh with 1902 triangles and 8873
DOF (up computed solution); € =0.0001; time estimation for Intel(R) Core(TM) i3 CPU

2.27 GHz
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Numerical results: Example 1
To check the convergence rate of Newton iterations:

@ first we increase the number of time-discrete levels up to maximal number of
iterations and add the same number of nodes Solver — Other — Store
Solution

o for each iteration except the last we compute the norm value;

1
o= a0 = ( [ 1@ - )2
Q

where u™) is the last iteration for the current value of 7. This we can do by
Results — Derived values — Surface Integration.

M)

2

0

2 ==gamma =1
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gamma = 100
6 =—gamma = 1000
-8
-10

Figure: Superlinear convergence of Newton iterations (on a log-scale) with e.=0.0001;
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Numerical results : Example 1

To get the approximate rate of convergence we used the maximum element size in

the meshes:
errory

convergence rate = |Og h1 max
h27max

[S810) 1)

Table: Tests with various meshes; last column: convergence in H&(Q)—seminorm

# of # of  # of conv.
triangles  DOF  iter. |up—uj| rate

546 2631 13 0.0336

936 4428 13 0.0286 0.7
1902 8873 11 0.0157 1.7
6530 29951 11 0.0067 1.4
24924 113270 12 0.0026 1.4
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Numerical results: Example 2

We choose rectangular domain
Q={xeR? x=(x1,x), —-1<x<1,-1<x<1}and

10cos(2((y — 1)+ x> —1))
f(x,y) = if x2+(y—1)2<1

0 elsewhere

(a) e=0 (b) e=10"*

Figure: The gradient magnitude of the solution obtained on the mesh with 268 triangles
and with final y=103.

Serbiniyaz Anyyeva and Karl Kunisch (Institute of MSemismooth Newton Method for Gradient Constrain October 26, 2011 18 /18



	conference-button: 


