

Presented at the 2011 COMSOL Conference in Boston, MA

Heat Transfer & Phase Change

Modeling a skylight

Martin Fält, Ron Zevenhoven

Åbo Akademi University
Thermal and Flow Engineering
Åbo / Turku, Finland
tel. +358 2 215 441
martin.falt@abo.fi
ron.zevenhoven@abo.fi
http://web.abo.fi/tkf/vt

Background

- The electricity demand for air conditioning is expected to grow tenfold by 2050 in Finland
- Controllability is important due to cold winters
- Radiative cooling with a triple windowskylight system with a green house gas inbetween

Earth-Atmosphere Energy Balance

efficient conversion technologies" Prog. Energy Combust. Sci. 37 ((2009) 15-51 "Needs, resources and climate change: Clean and Ghoniem, Ahmed F.,

Temperature of sky?

 The sky temperature can be measured with a pyrgeometer.

- It measures the energy flow in the interval 4.5-42µm as a single value
- Here the ambient and the sky temperatures are plotted
- $\dot{Q} = \sigma(286^4 273^4)$ $= 70^{W}/_{m^2}$

System Description of the skylight System

Cooling mode

Insulating mode

Calculation model

- The calculations are done by using the simulation software Comsol 4.1
- The calculations are done with gray media in 2-D

Results from earlier modeling

[W/m ²]	CO ₂	Air
Summer Cooling	117	15
Winter Insulating	966	983
Summer Insulating	88	19
Winter Cooling	883	655

Skylight filled with participating media

- Velocity profile in cm/s
- Temperature profile in

Skylight filled with participating media

- Velocity profile in cm/s
- Temperature profile in°C

ExperimentationDescription

- To asses the cooling effect two gas tight containers have been constructed
- This allows for comparative studies of different gases and constructions

Physical set-up

Results

Carbon dioxide21.4.2011

Ammonia 3.6.2011

Setting up the model

- No difference in Temp. between gases, why?
- Measured vs. actual Temp. of the gas?
- A singular event from the CO₂ experiment was modeled with Comsol 4.2

[°C]	T _{amb}	T _{sky}	T _{CO2}	Tair
5.35am	-1.1	-15.15	-4.80	-5.I

Modeling experiment

Heat flows:

- I. "surface to ambient radiation" Here, the "ambient" temperature for radiation is set to be the measured skytemperature.
- 2. Convective Cooling that is the wind, a wind speed of 4 m/s is assumed.
- Computationally heavy → 2-D
- Time-dependent model to avoid unstable equilibrium points

Modeling experiment

- The PE-film is assumed to have a T=0.2
- The aluminum foil is assumed to have and absorptance of α=0.04
- CO_2 was calculated to have a total α =0.16

Radiation Transmitted by the Atmosphere

- For an object to be cooled by radiative cooling needs it to emit heat radiation in the ~8-13µm interval (sky window)
- This interval depends on such weather condition as cloudiness and air moisture.
- CO₂ lies on one corner of the interval

Results from modeling

- Temperatures are taken at the last time step (1500 s.)
- Modeled results coincide with experimental results

[°C]	T _{amb}	T _{sky}	T _{air}	T _{CO2} (α=0)	T _{CO2} (α=0,16)
Ехр.	-1.1	-15.15	-5. I	-4.80	-4.80
T _{gauge}	Input	Input	-4,50	-4,50	-4.42
T _{gas}	Input	Input	-5,32	-5,43	-5.27

The influence of gas absorptance

- The absorptance of the gas was varied from 0 to more than 10 times that of CO₂
- The effect on gas temperature is neglible

1.11.2011

Conclusions

- Thicker insulation
- Reflectance the walls needs to be minimized
- Heating of the gas could increase temperature differences between gas and air temp.
- Calculations need to be done spectrally dependent
- Evaluation of different gases

Future Work

Cross-section of the rig

View of rig from above

Acknowledgements

- Maj & Tor Nessling Foundation 2009-2011
- Foundation of Åbo Akademi University 2010

1.11.2011