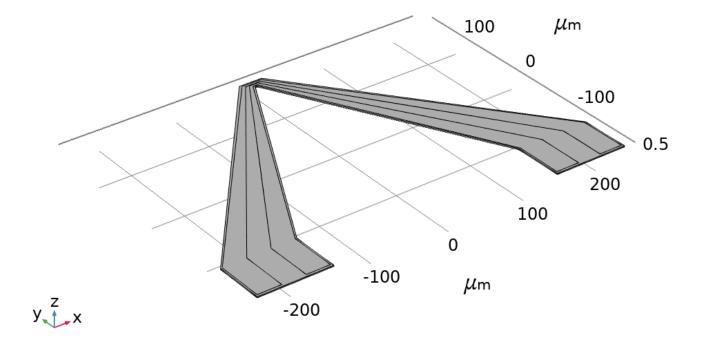


AN ALGAN/GAN BASED UV PHOTODETECTOR SIMULATION USING COMSOL TO OBTAIN THE FRESNEL COEFFICIENTS

Balaadithya Uppalapati¹, Akash Kota², Vamsy P. Chodavarapu², Goutam Koley¹

¹Department of Electrical & Computer Engineering, Clemson University, Clemson, SC, USA

²Department of Electrical & Computer Engineering, University of Dayton, Dayton, OH, USA



Outline

- ☐ Introduction
- ☐ Geometry Setup
- ☐ Simulation Procedure
- ☐ Results
- **□** Summary



Introduction

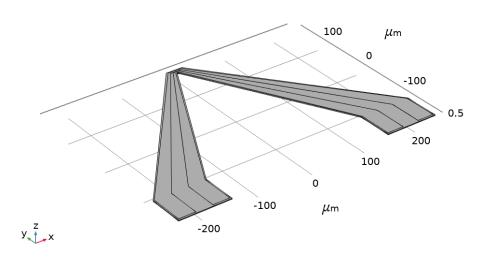
University of Dayton

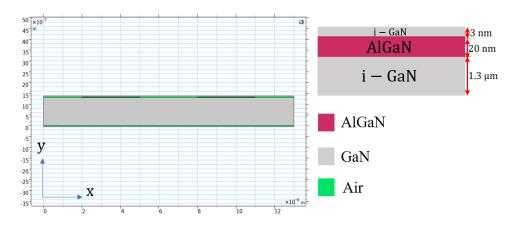
- ➤ Cantilever has been modeled to compute the Fresnel coefficients like absorptance, reflectance, and transmittance in the wavelength range of 300 nm to 500 nm
- > Fresnel coefficients are calculated for different thickness of bottom GaN layer
- Fresnel coefficients are also calculated by varying Al alloy composition in $Al_xGa_{(1-x)}N$

Source: C. Xie et al., "Recent Progress in Solar-Blind Deep-Ultraviolet Photodetectors Based on Inorganic Ultrawide Bandgap Semiconductors," Adv. Funct. Mater., 29, 1806006 (2019).

Applications

- > Detect UV irradiation on Earth which can increase due to depletion of ozone layer
- ➤ Short wavelength UV light used for flame detection
- Solar blind cameras for monitoring electrical power lines
- > Detection of high-temperature flames from rocket motor of a missile observed in intense sun light





Geometry Setup

3D Geometry of GaN-Al_xGa_{1-x}N-GaN ultraviolet photodetector Longitudinal cross section at the tip region of the cantilever

- Simplified 2D geometry has been used in the finite element model
- \triangleright Thicknesses of the top GaN, intermediate $Al_xGa_{1-x}N$, and bottom GaN layers are 3 nm, 20 nm, and 1 μ m respectively
- The gap between the two adjacent $Al_xGa_{1-x}N$ layers is 3 μ m
- ➤ An air medium of 50 nm thickness is added throughout the width of the cantilever to consider the surrounding environment of the cantilever

Simulation procedure

To get the electric filed distribution on the 2D geometry, the governing equation to be solved can be written as

$$\nabla \times (\nabla \times E) - k_0^2 \epsilon_r E = 0, \tag{1}$$

where $k_0 = \frac{2\pi}{\lambda}$ is the free space propagation constant and ϵ_r is the relative permittivity of the material.

For the given 2D geometry, the complex electric field E which is distributed along x and z axis can be written as

$$E(x,z) = \tilde{E}(x)e^{-jk_{z}z}, \tag{2}$$

where $\tilde{E}(x)$ represents the complex amplitude of the electric field distributed along the x axis and k_z is the out-of-plane wave vector component which is along the z direction.

The relative permittivity of the material can be written as $\epsilon_r = (n - jk)^2,$ where n and k are the respective real and imaginary parts of the refractive index of the material. (3)

 \triangleright In this simulation, the electrical conductivity (σ) and relative permeability (μ_r) of the material are assumed to be 0 and 1 respectively.

Simulation procedure cont....

 \triangleright For the given 2D geometry the reflection (R) and transmission (T) coefficients are obtained by calculating

the *s*-parameters.

 \triangleright The reflection coefficient (R) is calculated as

$$R = |s_{11}|^2. (4)$$

 \triangleright The transmission coefficient (T) is calculated as

$$T = |s_{21}|^2. (5)$$

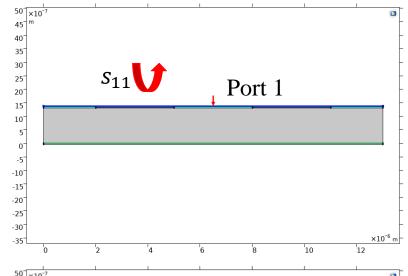
 \triangleright The equation to calculate s_{11} can be written as

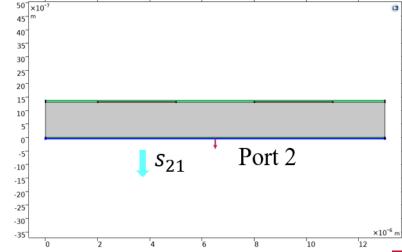
$$s_{11} = \frac{\iint ((E_C - E_1) \cdot E_1^*) dA_1}{\iint E_1 \cdot E_1^* dA_1}, \tag{6}$$

where E_c is the computed electric field and E_1 is the electric field pattern on port 1.

➤ The computed electric field can be written as

$$E_c = \sum_{i=1} s_{i1} E_i. (7)$$

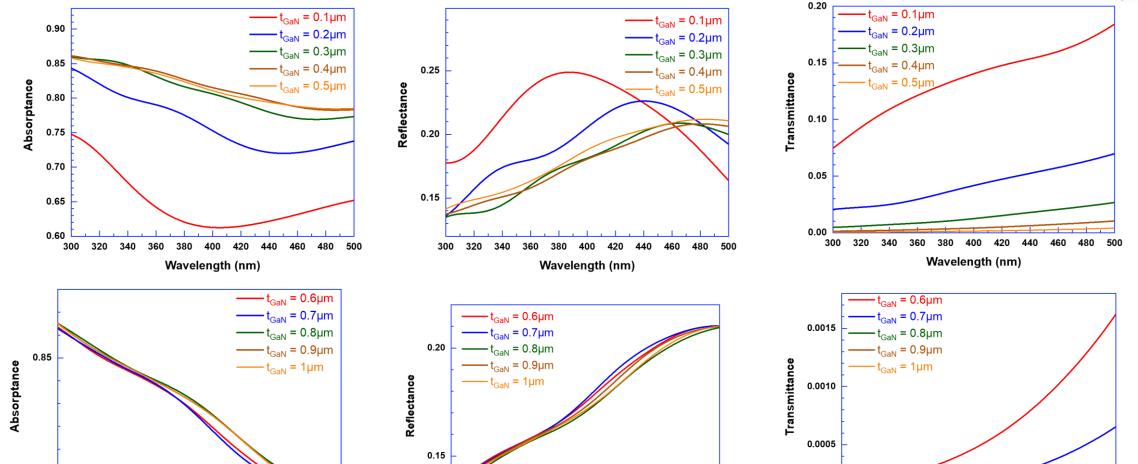

 \triangleright The equation to calculate s_{21} can be written as


$$s_{21} = \frac{\iint (E_c \cdot E_2^*) dA_2}{\iint E_2 \cdot E_2^* dA_2}, \tag{8}$$

where E_2 is the electric field pattern on port 2.

 \triangleright The absorption coefficient (A) is calculated as

$$A = 1 - R - T \tag{9}$$



Fresnel coefficients for different thickness of GaN

400

Wavelength (nm)

420

0.0000

320

340 360

380

400

Wavelength (nm)

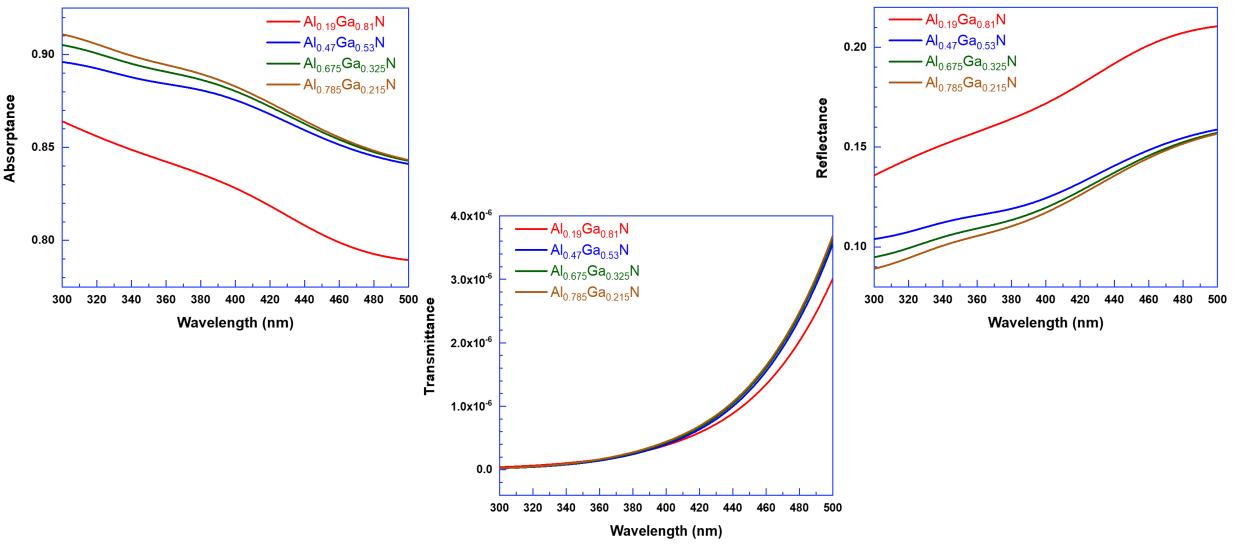
420

440

0.80

Wavelength (nm)

480


320 340

Fresnel coefficients for different Al alloy composition in

 $Al_xGa_{(1-x)}N$

Conclusion

- \triangleright For bottom layer GaN thicknesses > 0.5 μm , the absorptance and reflectance profiles remains basically unchanged
- For thicknesses <0.5 μm, the absorptance increases monotonically with the thickness of the bottom GaN layer
- From the simulations it has been observed that for thicknesses ≥ 1 µm, the transmittance of UV light through the cantilever is zero
- > With the thickness of the bottom GaN layer being fixed at 1.3 μm, the effect of Al alloy composition in Al_xGa_(1-x)N on the Fresnel coefficients has also been studied
- From the simulation results, it can be concluded that at any given wavelength as the Al% increases, the absorptance and reflectance of the cantilever monotonically increases and decreases, respectively

References

- 1. A.Khan, K.Balalrishnan, and T.Katona, "Ultraviolet light-emitting diodes based on group three nitrides," *Nat. Photonics*, **2**, 77–84 (2008).
- 2. S. Zhao *et al.*, "An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band," *Appl. Phys. Lett.*, **107**, 043101 (2015).
- 3. A. Talukdar et al., "Piezotransistive transduction of femtoscale displacement for photoacoustic spectroscopy," Nat. Comm., 6, 1-10 (2015).
- 4. D. Khan et al., "Plasmonic amplification of photoacoustic waves detected using Piezotransistive GaN microcantilevers," App. Phy. Letters., 111, 062102 (2017).
- 5. F. Bayram et al., "Piezotransistive GaN microcantilevers based surface work function measurements," *Jpn. J. Appl. Phys.*, **57**, 04030 (2018).
- 6. M. Razeghi and A. Rogalski, "Semiconductor ultraviolet detectors," J. Appl. Phys., 79, 7433-7473 (1996).
- 7. L. Sang, M. Liao, Y. Koide, M. Sumiya, "High-temperature ultraviolet detection based on InGaN Schottky photodiodes," Appl. Phys. Lett., 99, 031115 (2011).
- 8. Y. Bie, Z. Liao, H. Zhang, G. Li, Y. Ye, Y. Zhou *et al.*, "Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on Zno/GaN nanoscale P-N junctions," *Adv. Mater.*, 23, 649-653 (2011).
- 9. M. Khan et al., "III-Nitride UV Devices," Jpn. J. Appl. Phys., 44, 7191–7206 (2005).
- 10. K. H. Lee et al., "AlGaN/GaN Schottky barrier UV photodetectors with a GaN sandwich layer," IEEE Sens. J., 9, 814–819 (2009).
- 11. T. Tut et al., "Solar-blind Al_xGa_{1-x}N based avalanche photodiodes," Appl. Phys. Lett., **87**, 223502 (2005).
- 12. H. Y. Liu, Y. H. Wang, and W. C. Hsu, "Suppression of dark current on AlGaN/GaN metal-semiconductor-metal photodetectors," *IEEE Sens. J.*, **15**, 5202–5207 (2015).
- 13. E. Monroy, F. Calle, E. Munoz, and F. Omnes, "AlGaN metal-semiconductor-metal photodiodes," *Appl. Phys. Lett.*, **74**, 3401–3403 (1999).
- 14. D. B. Li et al., "Effect of asymmetric Schottky barrier on GaN-based metal-semiconductor-metal ultraviolet detector," Appl. Phys. Lett., 99, 261102 (2011).
- 15. X. J. Sun et al., "High spectral response of self-driven GaN-based detectors by controlling the contact barrier height," Sci. Rep., 5, 16819 (2015).
- 16. E. Monroy et al., "High-quality visible-blind AlGaN p-i-n photodiodes," Appl. Phys. Lett., 74, 1171–1173 (1999).
- 17. D. Walker et al., "Solar-blind AlGaN photodiodes with very low cutoff wavelength," Appl. Phys. Lett., 76, 403–405 (2000).
- 18. R. McClintock et al., "High quantum efficiency AlGaN solar-blind pin photodiodes," Appl. Phys. Lett., 84, 1248–1250 (2004).
- 19. T. Tut, M. Gokkavas, A. Inal, and E. Ozbay, "Al_xGa_{1-x}N based avalanche photo-diodes with high reproducible avalanche gain," *Appl. Phys. Lett.*, **90**, 163506 (2007).
- 20. L. Sun, J. L. Chen, J. F. Li, and H. Jiang, "AlGaN solar-blind avalanche photodiodes with high multiplication gain," Appl. Phys. Lett., 97, 191103 (2010).
- 21. Y. Huang et al., "Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes," Appl. Phys. Lett., 101, 253516 (2012).
- 22. M. A. Khan et al., "Schottky barrier photodetector based on Mg-doped p-type GaN films," Appl. Phys. Lett., 63, 2455 (1993).
- 23. H. Jiang *et al.*, "Visible-blind metal-semiconductor-metal photodetectors based on undoped AlGaN/GaN high electron mobility transistor structure," *Jpn. J. Appl.Phys.*, **43**, L683 (2004).
- 24. E. Cicek et al., "Al_xGa_{1-x}N based back-illuminated solar-blind photodetectors with external quantum efficiency of 89%," Appl. Phys. Lett., **103**, 191108 (2013).
- 25. T. Kawashima, H. Yoshikawa, and S. Adachi, "Optical properties of hexagonal GaN," J. Appl. Phys., 82, 3528 (2003).
- 26. N. Antoine-Vincent, et al., "Determination of the refractive indices of AlN, GaN, and Al_xGa_{1-x}N grown on (111) Si substrates," J. Appl. Phys., 93, 5222-5226 (2003).

