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Abstract

In this paper we apply COMSOL to obtain a numerical solution to an initial-boundary value problem (IBVP)for
the paraxial wave equation (PWE). This equation arises in laser beam propagation in a cylindrical cavity. We
compare the finite-element solution we obtain from COMSOL to the Galerkin approximation solution of the same
problem. Finally, we compare these two approximate solutions to the exact solution of the PWE in free space
and discuss similarities and differences.

1 Introduction

The Paraxial Wave Equation
Uxx + Uyy + 4iMUz = 0 (1)

is a well-known reduced model governing the propagation of laser beams (see [1], Chapter 4, for a dimensional version
of this equation). The function U in (1) is any component of the electric or the magnetic fields of the beam, and M
is a non-dimensional parameter defined in terms of the various parameters that define the laser beam.1

It is more convenient to work with the real and imaginary parts of the solution: Let U = V1 + iV2, and note that
(1) is equivalent to 

∆V1 − 4M
∂V2

∂z
= 0,

∆V2 + 4M
∂V1

∂z
= 0,

(2)

where ∆ = ∂2

∂x2 + ∂2

∂y2 . When confined to the half-space z > 0, the system in (2) has several exact solutions, and
chief among them is the following solution that starts out as a Gaussian function at z = 0 and remains Gaussian for
z > 0: 

V1 =
1

W
exp(− r2

W 2
) cos(φ+

Mr2

F
),

V2 = − 1

W
exp(− r2

W 2
) sin(φ+

Mr2

F
),

(3)

where r =
√
x2 + y2, and W (z) =

√
Θ2

0 + Λ2
0 is called the spot radius (also called the spot size) of the beam at any

z. Here Θ0 = 1− z and Λ0 = z
M are the refraction and diffraction parameters of the beam, respectively. Moreover,

the function φ = tan−1 Λ0

Θ0
is the phase shift, and

F =
(Θ2

0 + Λ2
0)(Θ0 − 1)

Θ2
0 + Λ2

0 −Θ0
(4)

1A Gaussian laser mean typically has a waist w0 and a phase radius of curvature F0. In terms of these parameters and the light’s

wavenumber k, M is defined as
kw2

0
2F0

.
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is the radius of curvature of the beam’s phase at any z. When F is positive, the beam is converging, and diverging
when F is negative. In the special case when F is unbounded (infinity), the beam is said to be collimated. This
exact solution will guide us throughout this paper where our main goal is to compute approximate solutions of (2),
not in the half-space z > 0, but instead in a cylinder that somewhat resembles the experimental domain in which we
perform beam propagation.

To that end we consider the domain Ωa defined by

Ωa = {(x, y, z)|x2 + y2 ≤ a2, z > 0}. (5)

For boundary conditions we choose Dirichlet boundary conditions for both components of U :

V1|∂Ωa = V2|∂Ωa = 0, (6)

and for initial conditions, motivated by the value of the exact solution in (3) at z = 0, and modified appropriately
for the bounded domain Ω, we consider{

V1(x, y, 0) = exp(−r2) cos(Mr2)g(r),
V2(x, y, 0) = − exp(−r2) sin(Mr2)g(r).

(7)

The function g in (7) is

g(r) =
1

2
(1 + cos[π(

r

a
)6]). (8)

The first part of the initial conditions (the product of the exponential and the trigonometric functions) is simply the
exact solution (3) evaluated at z = 0. The function g in (8) introduces attenuation in the bounded domain Ω, so
that the initial conditions and the Dirichlet boundary conditions in (6) are compatible.

2 The Galerkin Solution

The IBVP (2), (6), and (7) has the following approximate solution:

V1(x, y, z) =

∞∑
n=1

(bn cos
λ2
n

4M
z + cn sin

λ2
n

4M
z) J0(λnr). (9)

bn =
1

Cn

∫ a

0

V1(r, 0)J0(λnr)rdr, cn =
1

λ2
nCn

∫ a

0

∆(V2(r, 0))J0(λnr)rdr,

where

Cn =

∫ a

0

J0(λnr)
2rdr, λn =

j0,n
a
, n = 1, 2, ...

and j0,n is the n-th zero of J0(r), the Bessel function of the first kind. The expression for V2 is obtained from (2)b
by first computing the laplacian of V1 given by (9) followed by an integration in z and applying the known value of
V2 at z = 0.

3 Results from the Galerkin method

The figures in this section compare the analytical solution of the free space problem (the red curve) to the one
obtained using the Galerkin approximation with the 100-th partial sum of (9) (the blue curve). In Figures 1–3 the
horizontal axis shows values of z while on the vertical axis the quantities V1, V2, and |U | restricted to the axis,
(x, y) = (0, 0), are displayed. The physical parameters used are

F0 = 500 m, w0 = 3 cm, λ = 633 nm,

resulting in the value M =
kw2

0

2F0
= 8.93344, where k = 2π

λ . Each figure contains two graphs, one for a quantity in free
space, and the second, the same quantity calculated using the Galerkin method.

There are a few features worth noting in these figures. First, there is a remarkable agreement between the
solutions of the two regimes, where one is propagating unobstructed in free space and the other having to negotiate
the effects of the boundary. By taking the boundary of the cylinder, a, relatively large, we have attempted to mitigate
the effect of the boundary as much as possible, where we have succeeded to a large extent as far as the IBVP solution
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at (x, y) = (0, 0) is concerned. However, as soon as we look at any of the three figures at points away form the axis
of propagation, see Figures 4–6, the boundary effects become quite pronounced. It is not clear, for instance, if the
oscillations one sees in the IBVP solution when the points (x, y) are away from (0, 0), which are typically quite a bit
larger than the ones observed in Figures 1–3, are due to numerical instabilities associated with the Galerkin method,
or due to the fact the Dirichlet boundary conditions cause reflections that begin to interfere with the original beam,
a feature that is less noticeable on the axis of the beam.

A second feature worth noting is the location where the intensity peaks. Perhaps the fact that the size of the
maximum intensity is not quite the same as the one in the free space solution is less significant than the discrepancy
in the z values where the maximum occurs. This point is actually one of the main differences we have noticed when
we compare the Galerkin solution to the one we obtain in COMSOL, which is the subject of the next section.

4 Results in COMSOL

We have also obtained the solution to the initial-boundary value problem (2), (6), and (7) in COMSOL. Figures
7-12 show the output of COMSOL, which should be compared to Figures 1–6. The F0, w0, and λ parameter values
remain the same.

The initial-boundary value problem (2), (6), and (7) was setup within COMSOL’s coefficient form partial differ-
ential equation module. A disk shaped geometry with a radius a = 5 was selected to simulate the x, y domain (5) in
COMSOL. A consistent distribution of triangular shaped elements was applied to form a mesh on the domain. Our
mesh consisted of 25970 elements with 52257 degrees of freedom for each dependent variable V1 and V2 for a total
of 104512 degrees of freedom within the 2D disk. The z > 0 part of the domain was simulated with COMSOL’s
time-dependent solver using a backwards differentiation formula (BDF) solver. The solver took 18 minutes and 24
seconds to run. Figure 13 gives a convergence plot for COMSOL’s time dependent solver.

Similar to the Galerkin method results, the COMSOL results reveal a resemblance to the analytical free space
solution at the beam center (x, y) = (0, 0). Additionally, the off-axis beam at (x, y) = (0.1, 0.1) from COMSOL
appear similar in shape to the Galerkin method solution, but they both differ from the free space solution, perhaps
for reasons discussed earlier.

5 Conclusions

In this paper we presented a numerical study of the PWE with parameter values that are suitable for modeling
laser beam propagation. Our motivation is to develop enough skill and confidence in numerical modeling of beam
propagation to eventually study how laser beams propagate in turbulent media. As described in [2] (as well as
in many other references that can be found at www.usna.edu/lime), this work is part of a much bigger effort to
understand how to design laser beams that remain robust and stable when travelling through a turbulent medium,
be it an atmospheric or an oceanic medium. The current study is a small step toward modeling the experimental
setup described in [2]. Because the problem at hand inherently involves multiple physics, our goal is to use COMSOL
for the ultimate problem where we need to find solutions of a system of PDEs with variable coefficients, taking into
account spatially varying index of refraction changes along the propagation path, in order to model the interaction
of laser beams with and fluid flows.

In this paper we compared the solution of an initial-boundary value problem obtained by a Galerkin method and
by COMSOL. The solutions are similar in many respects, especially when compared with the analytical solution of the
free space problem, in that both solutions have the general trends of the analytical solution. The numerical solutions
are particularly good on the axis of propagation and agree well with the analytical solution there. We are especially
mindful of the on-axis agreement among the various solutions because the on-axis intensity is the largest value of the
beam intensity in any cross section and presumably this value is influenced less by the reflections from the boundary,
especially if the boundary is kept at a distance from the beam. Nevertheless, there are discrepancies between the
two numerical solutions, and these differences are pronounced enough that prompt us to continue investigating the
two methods in this simple setting before embarking on using COMSOL on much more complicated models of beam
propagation.

Finally, we point out that our COMSOL implementation of PWE was carried out by introducing the system
of equations (2) to its PDE solver, while the bulk of the development of the Galerkin method was applied to
the biharmonic equation that results by eliminating either of the two variables V1 or V2. In a presentation that
accompanies this conference paper, the authors present the results of implementing the biharmonic solver in COMSOL
and report on those results.
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Figure 1: The two graphs in this figure are the graphs of V1, computed two different ways, using the exact solution
in free space, and in a bounded domain using 100 basis functions in the Galerkin method.
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Figure 2: The two graphs in this figure are the graphs of V2, computed as described in Figure 1.
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Figure 3: Similar to Figure 2, the two graphs in this figure are the graphs of the intensity, |U |.
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Figure 4: The Galerkin and free space solutions of V1 at (x, y) = (0.1, 0.1).
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Figure 5: The Galerkin and free space solutions of V2 at (x, y) = (0.1, 0.1).
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Figure 6: The Galerkin and free space solutions of the intensity |U | at (x, y) = (0.1, 0.1).
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Figure 7: COMSOL result for V1, corresponding to Figure 1.
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Figure 8: COMSOL result for V2 corresponding to Figure 2.
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Figure 9: COMSOL result for |U |, corresponding to Figure 3
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Figure 10: COMSOL result for V1 at (x, y) = (0.1, 0.1), corresponding to Figure 4..
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Figure 11: COMSOL result for V2 at (x, y) = (0.1, 0.1) corresponding to Figure 5.
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Figure 12: COMSOL result for |U | at (x, y) = (0.1, 0.1), corresponding to Figure 6.
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Figure 13: Convergence plot of COMSOL’s Time-Dependent Solver.
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