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Introduction 

 
Modern problems of biomechanics, in particular, the problems 

of modeling vision correction in ophthalmology are associated 

with the study of the stress-strain state of shells and plates made 

of complex materials (fig.1 shows general structure of human 
eye). These problems are essentially nonlinear in geometry and 

in physical properties. It is necessary to model large and 

inelastic deformations on the one hand, and to set complex 

loading systems on the other. Solving such problems 

analytically is very hard, so modeling using FEM methods is 

the best way to study them. 

 
Figure 1. Anatomy of human eye. 
 

This paper considers the deformation of a significantly plastic 

anisotropic plate under hydrostatic loading, which simulates the 

bending of the section of the central eye nerve when intraocular 

pressure increases (see fig.2 for eye nerve structure). The 

biological tissue of nerve fibers has different strength properties 

under tension and compression. Such materials are called 

plastically anisotropic or materials with SD-effect. The elastic 

characteristics of the nerve tissue are very low and its strength 

is negligible. Determining these characteristics experimentally 

is a rather difficult task. Medical data of biological SD-tissue is 
used together with the classical Hill’s theory of plasticity and 

various mathematical models in which the transversal isotropy 

parameter and the plastic anisotropy parameter (SD-parameter). 

Asymptotic formulas for stresses are presented which are used 

for numerical modeling and graphical representation of 

elastoplastic properties of circular SD-plates. A numerical 

solution of the plate bend after calculating the system of fifth-

order differential equations is obtained. Euler difference 

method and software package COMSOL 5.4 are used to solve 

the problem. 

The classical theory of elastic and elastoplastic bending was 

developed in the scientific works of R. von Mises, R. Hill, 
L. H. Donnell. Elasticity theory for thin isotropic plates was 

introduced by S.P. Timoshenko. Plasticity was added to 

elasticity theory by V.V. Sokolovsky [1]. Bending problems of 

SD-plates are solved in works [2, 3, 4]. 

  
Figure 2. Schematic anatomy of optic nerve (right) and microscopic 
picture of cross section of optic nerve (left). 

 

Mathematical model 
 

This paper considers the problem of elastic-plastic bending of a 

round freely supported SD-plate possessing the properties of 

transverse anisotropy and uniformly loaded with pressure p on 

the upper surface.  

Figure 3 shows the central cross section of a curved circular 

plate, which shows following parameters: 

• ℎ is the half thickness of the plate, 

• 𝑥1, 𝑥2 are the radiuses of the plastic regions on the top 

and the bottom of the plate respectively, 

• 𝑎1, 𝑎2 are the depths of the plastic zones from the 

bottom and from the top of the plate respectively. 

The plastic regions are shaded. In the case presented on fig.3 

the neutral surface does not coincide with the geometrically 

average surface. A solid line ― the neutral surface, a dashed 

line ― geometrically mid-plane. 

The beginning of the coordinate system is in the center of the 
plate on the neutral surface (point O on fig.3). The development 

of plastic zones is disturbed. 

 
Figure 3. Elastic-plastic bending of a circular plate from SD material. 

 

In the articles [3], [4], the mathematical model for the SD-plate 
is made more complicated and a new criterion of fluidity is 

proposed: 

𝑘̅ = √𝜎𝑟2 − 𝐴𝜎𝑟𝜎𝜃 + 𝜎𝜃
2 + 𝜎𝛽  (1) 

Here 𝜎𝑟 , 𝜎𝜃 are the stresses in the plane of the plate. The 

average stress 𝜎 is equal to: 

𝜎 =
𝜎𝑟+𝜎𝜃

3
  (2) 



In (1) the transversal isotropy parameter A is used, which varies 

from 1 to 2 and can be found by following relation: 
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where 𝜎𝑝 is the yield point for uniaxial tension in the plane of 

the plate, 𝜎𝑝𝑧  is the yield point for uniaxial tension in a 

direction perpendicular to the plane of the plate, 𝜎𝑐  is the yield 

point by uniaxial compression in the plane of the plate, 𝜎𝑐𝑧 is 

the yield point for uniaxial compression in a direction 

perpendicular to the plane of the plate.  

The parameter β characterizes the plastic anisotropy property - 

SD effect. 
For uniaxial stretching (the formula on the left) and uniaxial 

compression (the formula on the right), criterion (1) is equal to: 

𝑘̅ = 𝜎𝑝 +
1

3
𝜎𝑝𝛽, 𝑘̅ = 𝜎𝑐 +

1

3
𝜎𝑐𝛽. (4) 

Thus, the relationship between 𝛽, 𝜎𝑝 and 𝜎𝑐  is: 

𝜎𝑐

𝜎𝑝
=
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In the case of a biaxial stress state, the criterions for stretching 

and compression can be written accordingly: 

𝑘̅ = 𝜎𝑝𝑧√2 − 𝐴 +
2

3
𝜎𝑝𝑧𝛽, 

𝑘̅ = 𝜎𝑐𝑧√2 − 𝐴 −
2

3
𝜎𝑐𝑧𝛽, (6) 

or 
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hence 
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The plate bending theory is based on the plane stress state 

model. The deformation of the transverse shear is ignored. The 

stress in the direction perpendicular to the plane of the plate is 

assumed to be zero. Proceeding from formulas (5), (6) and (8) 

it is possible to establish a connection between yield strengths 
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If the 𝜎𝑝, 𝜎𝑐 , 𝜎𝑝𝑧 , 𝜎𝑐𝑧, are known, then the values of 𝛽 and A 

can be calculated. Let’s assume that 𝜎𝑝 ⩽, 𝜎𝑐 , then from 

formula (9) it follows that 𝛽 ⩾ 0, and from formula (10) that 

A⩽ 2. 

From the point of view of the evaluation of the stressed state of 

the plate the most critical is in its center, therefore the stresses 

in the plastic regions near the centers of the top and the bottom 
surfaces of the plate should be considered. 

Suppose that 𝛽 ≪ 1. In this case in the center of the plate 𝜎𝜃 =
𝜎𝑟  and formula of the stresses take the form [5]: 

𝜎𝜃 = 𝜎𝑟 =
𝑘̅
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where 

𝑎 = √2 − 𝐴, 𝐹 = 1 −
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After expanding into a series and neglecting the terms of a 

higher order, asymptotic formulas are obtained: 
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Numerical Modeling 

 
It becomes possible to estimate the influence of the parameters 

A and 𝛽 on the stresses in the plate without solving the large 

problem of elastoplastic equilibrium of the plate [3]. 

The results of calculations using formulas (12) and (13) are 

given in Table 1. 

 

Table 1: Dependence of stresses on the parameters 𝛽 and A. 

  A = 1.1 A = 1.1 A = 1.2 A = 1.2 A = 1.3 A = 1.3 

𝛽  𝜎− /𝜎𝑃  𝜎+ /𝜎𝑃  𝜎− /𝜎𝑃  𝜎+/𝜎𝑃  𝜎−/𝜎𝑃  𝜎+ /𝜎𝑃 

0 1.054 1.054 1.119 1.119 1.195 1.195 

0.01 1.065 1.050 1.131 1.114 1.205 1.185 

0.05 1.110 1.033 1.178 1.094 1.245 1.150 

0.1 1.165 1.0128 1.242 1.067 1.333 1.136 

 

As the transversal isotropy parameter increases, the stresses 

increase. An increase in the parameter A by 10% causes an 

increase in stresses at 𝛽 = 0 by 7%, and at 𝛽 = 0.1 by 10%, 

therefore, the rate of stress growth with increasing 𝛽 rises. With 

an increase in 𝛽 by 5% and a constant A, the compressive stress 

increases by 5.5%, and the tensile stress drops by 2.3%. 

Analysis of the results of numerical simulation shows that for 

weak plastic anisotropy, the influence of the transversal 

isotropy parameter is greater than the effect of the SD, but with 

a strong plastic anisotropy, the effect of the SD increases 

substantially. This conclusion becomes even more obvious on 
the plots of the stress functions which depend on the parameters 

A and 𝛽. 

 

Simulation Results 
 

Research shows that plasticity area in the compression zone of 

the plate is substantially smaller than those in the tension zone. 

It is assumed that the yield strength during compression is 
greater than that under tension. To calculate the bending, the 

COMSOL 5.4 software package is used. Depending on the 

pressure, sizes of plasticity zones are calculated (see fig.4). 

 
Figure 4. The radiuses of plasticity “spot” at the top (blue) and the 
bottom (green) of the plate for P 26-36.5 MPa. 



Fig. 4 shows increasing radiuses of plasticity “spot” at the top 

and the bottom of the plate while raising the load from 26 MPa 

to 36.5 MPa. 

According to the results of the calculation, the magnitude of the 

plasticity "spot" and the depth of plasticity areas significantly 
depends on the condition of compression or tension (see fig.5 

and fig.6).  

 

 
Figure 5. Results of FE modeling - plastic anisotropy (left) and 
orthotropy (right) of the plate. 

 

 
Figure 6. The plasticity “spot” at the top (left) and bottom (right) of 
the plate for P=36 MPa. 
 

FE Modeling of Optic Nerve 

 
Based on real microscopic picture (see fig.2 (left)) 2D geometrical 
model is built with 3 different isotropic materials (see fig.7) 
corresponding to: 

• nerve bundles (orange color); 

• soft shell, walls of blood vessels, and septa (blue color), 
which separates nerve bundles; 

• central retinal artery and vein and small capillary (red 
color). 

 
Figure 7. 2D geometry of optic nerve base on real microscopic picture; 
nerve bundles - orange, soft shell – blue, blood – red. 
 

Model is built in plate interface (branch of Structural 

Mechanics). It allows to use thin flat structures of cross section 

of optic nerve, being loaded with intraocular pressure (IOP) P0 

in a direction out of the plane. In this calculation P0=80 mmHg, 

which corresponds to IOP level during creation of corneal flap 

(step of vision correction), intraocular injection, or eyes rubbing 

[6]. The reason to model such high pressure is to investigate 
influence of such level of IOP on stress-strain state in the area 

of central retinal blood vessels. Fig.8 show the FE mesh in that 

area. 

Fig.7 and fig.8 shows that geometry of the model is very 

difficult with no pattern or simple models. 

 

 
Figure 8. Mesh of central zone with central retinal blood vessels; nerve 
bundles - orange, walls of blood vessels and septa – blue, blood – red. 

 

For boundary conditions the outer edge of the plate is pinned. 

So, zero displacement of that edge in any direction are 

prescribed, but rotations are free. 

 

FE Modeling Results 
 
Fig.9 shows displacement of the cross section of optic nerve in a 
perpendicular direction. 

 
Figure 9. Displacements of the plate in the direction out of surface. 

Fig.10 and fig.11 shows stress on the surface of the cross 

section of optic nerve. 



 
Figure 10. Midsurface von Mises stress of the cross-section of optic 

nerve  

 

 
Figure 11. von Mises stress in central zone around central retinal blood 
vessels. 

 

Conclusions 

 
Numerical modeling and graphical representation of the 

elastoplastic properties of circular transversely isotropic and 

plastic anisotropic plates showed that for surface stress 

functions a solution to the problem of optimizing the selection 

of the parameters of transversal isotropy and plastic anisotropy 

under the condition of minimum stresses is possible.  

The application of the yield criterion made it possible to 
construct asymptotic formulas for their calculation, taking into 

account the transversal isotropy and the SD effect for the 

elastoplastic bending of a circular plate. The formulas obtained 

are universal and estimate the influence of the parameters of 

transversal isotropy and SD effect on the stress-strain state of 

any material satisfying the described conditions. Asymptotic 

formulas allows to make a rapid evaluation of the stress state of 

a plate without heavy calculations, which is important in 

engineering practice.  

FE modeling shows that areas next to an aorta and a vein are 

highly stressed and leads to a reduction in the size of the cross 

section of the vein and aorta. Which means that high intraocular 

pressure has negative impact on blood circulation and can lead 

to different eye diseases. 

As a result, we can conclude that the capabilities of the 

COMSOL software package allow us to investigate many 
problems of nonlinear deformation of SD-materials and that 

difficult geometrical FE problems in the ophthalmology field 

can be solved. 
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