Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Homogeneous Heating of Milk

A. Stahel, and A. Reichmuth
Berner Fachhochschule
Biel, Switzerland

When milk is taken out of a refrigerator it has to be heated up to 37°C. The standard solution is to put the bottle in a bath of warm water and wait. The goal is quickly to achive a uniform temperature of 37°C, without ever exceeding 40°C. Using COMSOL Multiphysics and a measurement setup for calibration, we show that this can be improfed by using variable heating. By choosing heating ...

Validation of Negative Ion Beam Space Charge Compensation

M. Cavenago[1], and P. Veltri[2]
[1]INFN-LNL, Legnaro, Italy
[2]RFX Consortium, Padova, Italy

The transport of intense ion beams with reduced beam divergence over reasonable drift distances requires a reliable space charge compensation (SCC). Negative ion beams (required in the Neutral Beam Injectors envisioned for the ITER tokamak) are here discussed. Secondary particles are generated by beam-gas collisions within the beam volume and their motion is followed by explicit leapfrog time ...

Improved Finite Element Modeling of Heat and Mass Transfers in Single Corn Kernels During Drying

A. J. Kovacs, and M. Nemenyi
University of West Hungary
Institute of Biosystems Engineering
Mosonmagyarovar
GYMS, Hungary

Our Institute at the West Hungarian University is dealing with modelling of heat physical treatments in agricultural (biological) materials. The essential key in order to gain accurate results is to know the driving forces during heat and mass transfers. In case of mass transfer processes the application of moisture gradient as driving force gives false results. Therefore, we use water ...

Multiphysics Design of ESS-Bilbao Linac Accelerating Cavities Using COMSOL

J. L. Munoz, and I. Rodriguez
ESS-Bilbao
Bilbao, Spain

A proton linac drives particles using the electric field of a high power RF standing wave in a resonant cavity. The design of these cavities involve several aspects of multiphysics simulation, that have been accomplished using COMSOL. The first step consist on the geometric optimization of the cavities in order to have the correct frequency while maximizing some figures of merit. This task ...

The Soil as Bioreactor: Reaction-diffusion Processes and Biofilms

M. Richter[1], S. Moenickes[2], O. Richter[2], T. Schröder[1]
[1]BASF SE, Agricultural Center, Limburgerhof, Germany
[2]Institute of Geoecology, TU Braunschweig, Braunschweig, Germany

In a soil pore, water flows through the biofilm, where the density of the latter was assumed to represent a flow resistance. This mechanism was implemented as a local change of fluid viscosity proportional to local biofilm density. It was assumed that diffusive substrate transport is possible through the biofilm region such that the biofilm was able to degrade the substance. Maximum flow ...

Finite Element Analysis of Equine Tooth Movement Under Masticatory Loading

M. Gardemin[1], M. Lüpke[1], V. Cordes[2], and C. Staszyk[2]
[1]Institute for General Radiology and Medical Physics, University of Veterinary Medicine Hannover, Hannover, Germany
[2]Institute of Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany

Like humans, horses can develop a variety of dental problems. Different equine diseases occur in different areas of the equine cheek tooth or its surrounding tissues. With a realistic simulation of a chewing cycle it can be possible to link mechanical phenomena such as high stress in distinct areas to commonly occurring diseases. According to different angles of the acting chewing force, ...

Design and Development of Microsystems within a Corporate Research Environment by Utilizing Comsol Multiphysics

A. Frey
Siemens AG
Corporate Research & Technologies
Munich, Germany

Alexander Frey received his M.A. degree from the University of Texas, Austin, in 1994, the Dipl. Phys. degree from the University of Wuerzburg, Germany in 1997 and the PhD from the Saarland University, Germany in 2010. In 1997 he joined Research Laboratories of Siemens working on the design of DRAM sensing circuits. In 1999 he joined Corporate Research, Infineon, Munich, Germany. He was engaged ...

Analysis Of Linearly Polarized Modes

I. Avram, and I. Gavril Tarnovan
The Technical University of Cluj Napoca
Cluj, Romania

This paper presents a study on the propagation modes of electromagnetic waves through a step index fiber optics. To analyze the propagation of electromagnetic field, a simulation in Comsol 4.0 has been implemented using two different optical fibers. Obtaining the propagation modes, called linearly polarized modes (LPnm) to get their characterization according to the radial and azimuthal ...

Lamb Waves and Dispersion Curves in Plates and It’s Applications in NDE Experiences Using Comsol Multiphysics

P. Gómez, J. P. Fernandez, and P. D. García
Hydro-Geophysics & NDE Modeling Unit
University of Oviedo
Mieres, Spain

In this paper, a model for numerically obtaining lamb wave modes and dispersion curves in plates is presented. It is shown that COMSOL Multiphysics can be employed to simulate the behavior of guided waves in dispersive plates, which is useful for NDE applications. A two dimensional steel plate (4x0.1 meters) is excited with a space-time impact point source. To model the point source, we use ...

Comparison of 2D Conduction Models for Vertical Ground Coupled Heat Exchangers

A. Priarone[1], and S. Lazzari[2]
[1]DIPTEM-TEC, Università di Genova, Genova, Italia; Corresponding Author: a.priarone@unige.it
[2]DIENCA, Università di Bologna, Bologna, Italia

The effect of the infinite length approximation on evaluating the temperature of the surface of Borehole Heat Exchangers is determined by means of COMSOL Multiphysics. In detail, two 2D models of a BHE are compared: in the first model, the domain is represented by a cross-section of the geometry, while in the second model, it is represented by an axial-section of the geometry and, thus, the BHE ...