Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

基于COMSOL的随钻电磁波电阻率仪器WPR探测特性研究

康正明 [1], 柯式镇 [1], 姜明 [1], 尹成芳 [1],
[1] 中国石油大学(北京),北京,中国

引言:随着水平井和大斜度井的增多,随钻测井(LWD)技术越来越重要。随钻电磁波电阻率测井在随钻测井中应用最为广泛。在国外,随钻电磁波电阻率测井方法已经成为一种成熟的测井技术,但我国仍处于研究发展阶段。20世纪90年代,大庆成功地研制出2MHz电磁波电阻率测井仪器。本世纪,中油测井成功引进并研制出了随钻电磁波电阻率测井仪WPR。仪器仿真对国内引进该仪器进行生产以及实际测井资料处理解释具有指导意义。本文借助COMSOL Multiphysics®仿真平台,建立了二维轴对称模型。模型分为三层和多层,选择AC/DC模块中的磁场。通过LiveLink for MATLAB®实现脚本加载模型并控制数据按一定格式输出为文本文件。考查了APS公司的随钻电磁波电阻率仪器WPR仪器的探测特性,对比了仿真结果与APS公司商业宣传介绍的仪器特性。同时对比了COMSOL与同类有限元仿真软件的误差 ...

Using COMSOL Multiphysics in Eddy Current Non Destructive Testing Context

L. Santandrea, and Y. Le Bihan
Laboratoire de Génie Electrique de Paris, Gif-sur-Yvette, France

Eddy current testing (ECT) is widely used to check the integrity of electrically conducting parts and notably to detect flaws. It is based on the interaction between a probe and the part under testing. The finite element method (FEM) is well fitted to the modelling of these kinds of problems because of its large flexibility which allows to deal with complex probe and part configurations. In this ...

External Field Induced Flow Patterns in Microscale Multiphase Flows

D. Bandyopadhyay[1], A. Sharma[1], S. Timung[1], V. Tiwari[1], T. K. Mandal[1]
[1]Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

The study of multiphase flows inside the microfluidic devices has received much attention recently because of its applications in heat and mass transfer, mixing, microreaction, emulsification and most importantly in MEMS and lab-on-a-chip. We study the influence of an electric field on the interfacial morphologies and their transitions, the phenomenon termed electrohydrodynamics. The literature ...

Finite Element Analysis of Superconductive Tape by Using T-Ω Formulation

H. Arab[1], S. Memiaghe[1], C. Akyel[1]
[1]Ecole Polytechnique of Montreal, Montreal, QC, Canada

This paper deals with a numerical modelling technique based on finite elements method for computing magnetic field and current density distributions in high temperature Superconducting (HTS) tapes. The model is developed using the T-ῼ formulation for which the degree of freedom (DOF) and the CPU time decreased considerably in AC losses analysis, and it is also observe that T-ῼ formulation give ...

Design and Optimization of Electrostatically Actuated Micromirror

Anna Thomas[1], Juny Thomas[1], Deepika Vijayan[1], K.Govardhan[2]
[1]VIT University, Sensor System Technology, School of Electronics Engineering, Vellore, Tamil Nadu, India
[2]VIT University, MEMS & Sensor Division, School of Electronics Engineering, Vellore, Tamil Nadu, India

The microscopic size of MEMS devices accounts for strong coupling effects which arise between the different physical fields and forces. Micromirrors are essential parts of microswitches in fiber optic network telecommunication. They are usually 1 to 3 mm in size, fabricated from single crystalline silicon and mostly are electrostatically actuated. The objective is to design the micromirror to ...

2D Simulation of Cardiac Tissue - new

S. Esfahani[1]
[1]University of South Florida, Tampa, FL, USA

A two-dimensional atrial tissue model has been constructed in COMSOL Multiphysics® software to study the propagation of action potential and electrograms. The model presents the atrial electrograms recorded with a mapping catheter. A 2D atrial tissue model is simulated using the Courtemanche et al. cell model equations. PDE in coefficient form was used in COMSOL Multiphysics® to reproduce the ...

Multi-Layers Surface Coil Design: Geometry Optimization - new

S. Aissani[1], L. Guendouz[2]
[1]CRM2, Institut Jean Barriol, University of Lorraine, Vandoeuvre-lès-Nancy, France
[2]Mesures et architectures électroniques, University of Lorraine, Vandoeuvre-lès-Nancy, France

Nuclear Quadrupole Resonance (RQN) is a radio frequency (RF) spectroscopic technique that is used to detect quadrupole nuclei such as Nitrogen-14. NQR was found to be a good candidate for detecting narcotics, explosives and medicines [1]. However, due to its low sensitivity the use of NQR is still limited. One way to increase the sensitivity is to improve the RF coil by means of a better RF ...

Smart Chest Belt for Cardiac Health Monitoring - new

M. Vijayalakshmi[1], R. C. Thiagarajan[1]
[1]ATOA Scientific Technologies Pvt. Ltd., Bengaluru, Karnataka, India

Conventional cardiac electrical signal monitoring and measurement techniques such as Electrocardiograph (ECG) are prone to operator error due to multiple lead attachment requirements. These multiple electrode based systems are also not convenient for continuous cardiac health monitoring, though ECG is the best way to measure and diagnose abnormal rhythms of the heart. In this paper, a smart ...

Simulation of Sample Inhomogeneity in Microwave Impedance Microscopy

T. S. Jones [1], C. R. Pérez [1], J. J. Santiago-Avilés [1],
[1] University of Pennsylvania, Philadelphia, PA, USA

Microwave impedance microscopy (MIM) is a novel mode of atomic force microscopy that can measure topography and local electrical impedance simultaneously and with nanometer spatial resolution [1]. This technique is typically used qualitatively, identifying defects in nanodevices or imaging ferroelectric domain walls, for example. However, the technique also has the potential to be used in a more ...

3D Dynamic Linear Electromagnetic Actuator Modeling and Simulation

O. Craciun[1]
[1]ABB AG, Ladenburg, Germany

Single coil actuators are representing one important component of ABB’s medium voltage reclosers. Their performance is strongly influenced by the considered material properties as well as by the electronic control units’ properties that will power the actuator. Therefore, this paper focuses on electromagnetic actuators modeling and simulation in COMSOL Multiphysics®.