Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling Deep-Bed Grain Drying Using COMSOL Multiphysics®

J.G. Pieters[1], R. ElGamal[1], F. Ronsse[1]
[1]Faculty of Bioscience Engineering, Department of Biosystems Engineering, Ghent, Belgium

CFD simulations were carried out to predict the convective heat and mass transfer coefficients in the rice bed, and correlations were developed for the convective heat and mass transfer coefficients as a function of drying air flow rate. The developed correlations were used to extend the model developed by ElGamal et al. (2013) for thin-layer rice drying to volumetric heat and mass transfer in a ...

A Comparison Between an A-V and V Formulation in Transcranial Magnetic Stimulation

B. Granula[1], K. Porzig[2], H. Toepfer[2], M. Gacanovic[1]
[1]University of Banja Luka, Banja Luka, Bosnia-Herzegovina
[2]Technische Universität Ilmenau, Ilmenau, Germany

The prediction of the exact location and intensity of the electric field induced in the human brain during Transcranial magnetic stimulation is a nontrivial computational task. Numerical simulations of the procedure can be used to acquire first approximations in a safe and controlled environment. In order to make this approach more accessible, it is necessary to reduce computation time as much ...

Optimization of MEMS Based Capacitive Accelerometer for Fully Implantable Hearing Aid Application

A. Dwivedi [1], G. Khanna [1],
[1] NIT Hamirpur, Hamirpur, Himachal Pradesh, India

This work describes the design and optimization of three prototypes of microelectromechanical systems (MEMS) capacitive accelerometer-based middle ear microphone. The microphone is intended for middle ear hearing aids as well as future fully implantable cochlear prosthesis. The analysis is done using COMSOL Multiphysics®. The maximum applied acceleration was considered 1g. Human temporal bones ...

Analysis of 3D Biocompatible Additive Structure Using COMSOL Multiphysics® Software - new

E. Lacatus[1], M. A. Sopronyi[2], G. C. Alecu[1], A. Tudor[1]
[1]Polytechnic University of Bucharest, Bucharest, Romania
[2]INFLPR -National Institute for Laser Plasma and Radiation Physics, Bucharest, Romania

For biocompatible prosthetics, from dental implants up to bone parts, manufacturers have to find the best way to correlate process parameters and the material properties as to meet the unique needs of individuals. Additive manufacturing techniques aim at creating complex biocompatible structures able to overcome the present shortfalls of the metal and metal alloys implants related to ...

Deformation of Biconcave Red Blood Cell in the Dual-Beam Optical Tweezers

Y. Sheng, and L. Yu
University Laval
Quebec City, QC
Canada

A biconcave-shaped Red Blood Cell was trapped and deformed in a dual-trap optical tweezers. The two highly focused trapping beams of Gaussian intensity distribution were modeled as background field in the COMSOL Radio Frequency Module. The 3D radiation stress distribution on the cell surface was computed via the Maxwell stress tensor. The 3D deformation of the cell was computed with the ...

Determination of Mechanic Resistance of Osseous Element Through Finite Element Modeling

E. Isaza[1], E. Salazar[1], L. Florez[1]
[1]Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia

The consequences of hip fracture and femoral fracture are widely known. The mechanical strength of the femur varies in every person, but it is possible to predict the mechanical resistance with parameters like density, dimensions and mineral content. This paper uses different models and empirical studies to determine the mechanical properties of the human femur, developing isotropic and ...

Simulation of the Electrode-Tissue Interface with Biphasic Pulse Train for Epi-retinal Prosthesis

S. Biswas[1], S. Das[2], M. Mahadevappa[2]
[1]Advanced Technology Development Center, Indian Institute of Technology, Kharagpur
[2]School of Medical Science and Technology, Indian Institute of Technology, Kharagpur

Retinitis Pigmentosa (RP) and Age-related Macular Degeneration (AMD) are diseases causing blindness in a large number of people. In this type of degenerative disease, mostly the photoreceptors are damaged. Thus attempts have been made to electrically stimulate the surviving inner retinal neurons and retinal ganglion cells (RGC) in order to restore vision. In this paper, the electrode-tissue ...

Modeling Light Propagation in Skin for Visualization of Subcutaneous Veins

H. Kwon[1], R. Huancaya[1]
[1]Andrews University, Berrien Springs, MI, USA

Vein visualization systems such as the VeinViewer are vein-contrast enhancement devices that use an infrared camera to highlight blood or the underlying vasculature and project the image in real time onto the skin. Understanding the light propagation in a realistic skin model is critical, but only a few computational models have been developed to account for this particular system. We have ...

Flexible Numerical Platform for Electrical Impedance Tomography

A. Fouchard [1], S. Bonnet [1], L. Hervé [1], O. David [2],
[1] University Grenoble Alpes, CEA, LETI, MINATEC Campus, Grenoble, France
[2] Univesité Joseph Fourier, Grenoble Institute of Neuroscience, La Tronche, France

An implementation of the Electrical Impedance Tomography (EIT) forward problem in a generalist FEM package is presented. It fulfils the complete electrode model boundary conditions, combining current injection with contact impedance on a single boundary. Our implementation is benchmarked with the EIDORS FEM library. The Comsol Multiphysics environment proves consistent and provides a flexible ...

Electrical Characterization of Biological Cells on Porous Substrate Using COMSOL Multiphysics®

D. Mondal[1], C. RoyChaudhuri[1]
[1]Department of Electronics and Telecommunication Engineering, Bengal Engineering and Science University, Howrah, West Bengal, India

In this paper, the gross electrical characterization of biological cells on porous substrate is analyzed using COMSOL Multiphysics®. Dynamic electrical characterization during cell growth is used as a non-invasive and label-free technique to understand the growth kinetics of cells. It is observed from the COMSOL simulation that the percentage change in the current density is greater in porous ...