Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling Heat and Mass Transfer in Bread During Baking

V. Nicolas[1,2], J.P. Ploteau[1], P. Salagnac[2], P. Glouannec[1], V. Jury[3], and L. Boillereaux[3]
[1]Laboratoire d’Ingénierie des MATériaux de Bretagne – Equipe Thermique et Energétique, Université Européenne de Bretagne, Lorient Cedex, France
[2]Laboratoire d’Etudes des Phénomènes de Transfert et de l’Instantanéité : Agro-industrie et Bâtiment, Université de La Rochelle, La Rochelle Cedex, France
[3]Laboratoire de Génie des Procédés, Environnement, Agroalimentaire, ENITIAA, France

In this paper, we present a first model carried out with COMSOL Multiphysics to model bread baking, considering heat and mass transfer coupled with the phenomenon of swelling. This model predicts the pressures, temperatures and water contents evolutions in the dough for different energy requests. First results obtained are analyzed according to various physical parameters in order to better ...

Studies of Lead Free Piezo-Electric Materials Based Ultrasonic MEMS Model for Bio sensor

P. Pattanaik[1], S. K. Kamilla[1], D. P. Das[2], S. K. Pradhan[3]
[1]MEMS Design Center, Institute of Technical Education & Research (ITER), Sikhya ‘O’ Anushandhan University, Bhubaneswar, Odisha, India
[2]Process Engineering and Instrumentation Lab, Institute of Minerals and Materials Technology (IMMT), Bhubaneswar, Odisha, India
[3]Dept of ECE, Hi-Tech Institute of Technology, Khurda, Odisha, India

This paper describes the design of an ultrasonic transducer using different lead free piezo-electric materials and evaluates their performance with different glucose levels in the human blood. COMSOL Multiphysics 4.2a was used for the simulation study using 2D axis symmetric model of piezoelectric transducer which was designed with lead free piezoelectric materials such as Barium Sodium Niobate ...

Cellular Scale Model of Stratum Corneum

R. Santoprete[1], B. Querleux[1]
[1]L'Oréal, Paris, France

To better quantify the impact of the morphological and mechanical properties of the main constituents of the stratum corneum (SC, the outermost layer of the skin) on its overall mechanical behavior, we developed a biomechanical model of the SC at a cellular scale, based on in vitro morphological and mechanical data. The sensitivity analysis quantified the relative impact of the mechanical and ...

Simulation and Experimental Analysis of Drug Release Rates from Magnetic Nanocomposite Spheres - new

L. Saeeednia[1], H. Mehraein[2], F. Abedin[1], K. Cluff[2], R. Asmatulu[1]
[1]Department of Mechanical Engineering, Wichita State University, Wichita, KS, USA
[2]Department of Bioengineering, Wichita State University, Wichita, KS, USA

Targeted drug delivery systems have been wildly studied in cancer therapy due to the toxicity of most of chemotherapeutic drugs. Nanoparticles can be attached to the small molecules of the drugs and serve as drug carriers to deliver the drug molecules into the area of interest. In this research, polymeric microspheres containing biodegradable poly(D, L-lactide-co-glycolide) (PLGA), magnetic ...

3-D Finite Element Modeling of Brain Edema: Initial Studies on Intracranial Pressure Using COMSOL Multiphysics®

X.G. Li[1], H. von Holst[1][2], J. Ho[1], and S. Kleiven[1]

[1]Division of Neuronic Engineering, KTH, Stockholm, Sweden
[2]Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden

Brain edema is one of the most common consequences of serious traumatic brain injuries which is usually accompanied with increased Intracranial Pressure (ICP) due to water content increment. A three dimensional finite element model of brain edema is used to study intracranial pressure in this paper. Three different boundary conditions at the end of Cerebral Spinal Fluid (CSF) were used to ...

Transport and Concentration of Charged Molecules in a Lipid Membrane - new

S. D. Evans[1], J. S. Roth[1], M. R. Cheetham[1]
[1]University of Leeds, Leeds, UK

Brownian ratchets and electric fields are used for the transport of membrane components. Transport is achieved through the combination of a pattern with free diffusion. We show a good agreement between simulation and experiment, therefore allowing for further optimisation of the ratchets using COMSOL Multiphysics. In addition to the transport device we also introduce the possibility to ...

Microvascular Dysfunction in PAD Patients - new

K. Cluff[1], H. Mehraein[1], B. Jayakumar[2]
[1]Department of Bioengineering, Wichita State University, Wichita, KS, USA
[2]Department of Industrial & Manufacturing Engineering, Wichita State University, Wichita, KS, USA

Background: Peripheral arterial disease (PAD) is characterized by atherosclerotic blockages of the arteries supplying the lower extremities, which cause a progressive accumulation of ischemic injury to the skeletal muscles of the lower limbs. Despite revascularization treatment intervention some PAD patients require follow up secondary treatment due to a continued decline in limb function, ...

Numerical Homogenization in Multi-scale Models of Musculoskeletal Mineralized Tissues

A. Gerisch[1], S. Tiburtius[1], Q. Grimal[2], and K. Raum[3]
[1]Technische Universität Darmstadt, Darmstadt, Germany
[2]Laboratoire d’Imagerie Paramétrique, UPMC, Paris, France
[3]Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany

Musculoskeletal mineralized tissues (MMTs), e.g. bone, are hierarchical composite materials. Their effective elastic properties at different scales are of interest for computational studies of the MMT’s response to mechanical loading but also to realistically simulate implant osseointegration. We combine multi-scale and multi-modal experimental techniques with mathematical modelling of MMTs ...

Investigation of the Effect of Spinal Defects on Spondylolysis and Stress Fracture of Vertebral Bodies

M.S. Yeoman[1], C. Quah[2], A. Cizinauskas[1], K. Cooper[1], D. McNally[5], B. Boszczyk[2]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[2]The Centre for Spinal Studies and Surgery, Queen’s Medical Centre, Nottingham, United Kingdom
[5]Bioengineering Research Group, Faculty of Engineering, The University of Nottingham, Nottingham, United Kingdom

Spondylolysis (SL) is a defect of the spinal vertebra, and is typically caused by stress fracture of the pars interarticularis bone of the vertebral arch. It is especially common in adolescents who over train in sporting activities. Spina bifida occulta (SBO) is a malformation of the spine where the protruding vertebral bodies are not fully formed. In this study we demonstrate the predisposition ...

Kinetics of Proteins in the Blood-Brain Barrier

K. Gandhi [1],
[1] University of California, Riverside, CA, USA

The delivery of chemotherapy for cancer into the central nervous system, in particular the brain, remains a challenge. This results in brain metastases commonly being a cause of death from cancer. Here, we look at the environment of the blood-brain barrier. Then, we explore two proteins (breast cancer resistance protein and p-glycoprotein) that may inhibit the transport of medications (erlotinib ...