Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Cellular Traction Force Based Deflection of PDMS Micropillars - new

J. Wala[1], D. Maji[1], S. Dhara[1], S. Das[1]
[1]Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India

Cells are complex entities which not only passively sense external stimuli (viz. chemical, optical or mechanical) but also interact with extracellular matrix (ECM) by regulating cellular behavior such as growth, proliferation, migration, etc. Monitoring cell growth and migration of adherent cells becomes a crucial factor in determining cell-cell and cell-substrate interaction, important for ...

Image-based Simulation of Electrical Impedance Techniques Applied on the Human Thorax for Cardio-pulmonary Applications

A. Harkara[1], R.M. Heethaar[2], R.T. Cotton[1], and F.K. Hermans[2]

[1]Simpleware Ltd., Exeter, UK
[2]VU University Medical Center, Amsterdam, Netherlands

For medical diagnostic purposes there is an increasing need for non-(or minimal) invasive techniques to measure all kinds of parameters that can provide insight in the functioning of cells, organs or organ systems. Currently, Impedance Cardiography (ICG) is used for measurements of the heart and Electric Impedance Tomography (EIT) is used for investigating lung tissue condition. The PDE is ...

Image Based Mesh Generation for Realistic Simulation of the Transcranial Current Stimulation

R. Said[1], R. Cotton[1], P. Young[1], A. Datta[2] , M. Elwassif[2], and M. Bikson[2]
[1]Simpleware Ltd, Exeter, UK
[2]Department of Biomedical Eng, The City College of New York, USA

Electrical stimulation of the brain involves the application of currents delivered through scalp electrodes to modulate brain activity, known as Transcranial Current Stimulation (TCS). A critical factor for TCS efficacy and safety is the “spatial focality” of induced neuronal modulation. Bikson and coauthors from the City College of New York have been investigating the impact of disc ...

From customer requirement to product requirement with COMSOL

A.B. Nilsson
BD Medical - Medical Surgical Systems, Helsingborg, Sweden

Anders B Nilsson graduated M. Sc. in engineering physics from Lund University in Sweden. He has been working in the R&D department at BD Medical as principal engineer and project leader since 2005. He uses COMSOL for a wide range of functions, such as early concept development and qualification of products.

Using Optical Flow Tracing of MRI Flow Artifacts to Validate CFD Findings

R. H. Lauridsen, S. Ringgaard, and S. Alberg Thrysøe
Aarhus University Hospital
Aarhus, Denmark

The aim of this study is to use tracking of flow artifacts in Magnetic Resonance Imaging of fluids to validate CFD. Phase Contrast MRI will also be used for comparison. The correlation between flow of the fluid and movement of the artifacts is investigated using an aorta flow phantom, which is modeled from a human aorta and printed in thermo plastic. An Optical Flow algorithm is used to track ...

Simulating Organogenesis in COMSOL

D. Iber, D. Menshykau, and P. Germann
ETH Zürich
Department of Biosystems Science and Engineering
Basel, Switzerland

Organogenesis is a tightly regulated process that has been studied experimentally for decades. Computational models can help to integrate available knowledge and to better understand the underlying regulatory logic. We are currently studying mechanistic models for the development of limbs, lungs, kidneys, and bone. We have tested a number of alternative methods to solve our spatio-temporal ...

A Simplified Numerical Model for Simulating Sliding Door and Surgical Staff Movement in an Operating Theater

C. Balocco[1]
[1]Dipartimento di Energetica, Università di Firenze, Firenze, Italy

This paper deals with a numerical investigation on sliding door and people moving effects on the indoor climate of a standard ISO5 class OT with an ultraclean air filter system and a total ceiling unidirectional diffuser. A simple method to analyze the effects on the OT climate by different sliding door conditions combined with crossing persons and persons with a stretcher crossing is provided. ...

COMSOL Multiphysics® Model of Canine Elbow for Use in Investigating Medial Coronoid Disease

K. A. Bodnyk[1], G. J. Noble[1], N. Fitzpatrick[2], M. J. Allen[3], K. Stephenoff[1], R. T. Hart[1]
[1]Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
[2]Fitzpatrick Referrals, Godalming, Surrey, United Kingdom
[3]Department of Veterinary Medicine, The Ohio State University, Columbus, OH, USA

The elbow joint in dogs constitutes a complex interaction of three bones, the humerus, radius and ulna. Medial coronoid disease (MCD) is a common cause of lameness in dogs, i.e. fracturing of the most prominent portion of the ulnar joint surface driven in flexion and in pivot against both the humerus and the radius. The cause remains unknown, but prior studies suggest joint incongruency as an ...

Multiphysics Modelling and Simulation of Implantable Wireless MEMS Capacitive Sensor for Cardiovascular Diagnostics

R.Yogeswari[1], S.Venkateshwaran [1], K.Umapathi[1]
[1]United Institute of Technology,Coimbatore,Tamil Nadu, India

Monitoring the Central aorta is a more effective way to diagnose cardiovascular diseases than conventional techniques. Approximately, six million people in the world are currently living with aortic aneurysm and every year 750,000 new cases are diagnosed. This paper presents the design and simulation of biocompatible Wireless MEMS sensor for detection of intraoperative leaks of the stent graph ...

Modeling the Behavior of Phased Arrays in Brain Tissue: Application to Deep Brain Stimulation

V. Valente[1], A. Demosthenous[1], and R. Bayford[2]

[1]Department of Electronic & Electrical Engineering, University College London, London, United Kingdom
[2]Department of Natural Sciences, Middlesex University, London, United Kingdom

Deep Brain Stimulation (DBS) is a therapeutic tool used for a number of neurological disorders including chronic pain, incontinence and movement disorders, such as Parkinson’s disease. DBS consists of the low-frequency stimulation of an area of the brain, known as basal ganglia. The stimulation is provided by clinical implant, consisting of a pulse generator and an electrode lead ...

Quick Search