Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Convection in Water Phantom Induced by Periodic Radiation Heating

H.H. Chen-Mayer[1], and R. Tosh[1]
[1]Ionizing Radiation Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA

Water calorimetry is employed to establish a primary reference standard for radiation dosimetry by measuring the temperature rises in a water phantom (a cube of about 30 cm x 30 cm x 30 cm) subjected to a beam of ionizing radiation.  We use COMSOL Multiphysics to model the system using the Heat Transfer module and the Incompressible Navier-Stokes module with a geometry of 2D-axial ...

Simulation of Transport of Lipophilic Compounds in Complex Cell Geometry

Q.A. Chaudhry[1], M. Hanke[1], and R. Morgenstern[2]
[1]School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden
[2]Karolinska Institutet, Stockholm, Sweden

The mathematical modeling of the diffusion and reaction of toxic compounds in mammalian cells is tough task due to their very complex geometry. The heterogeneity of the cell, particularly the cytoplasm, and the variation of the cellular architecture, greatly affects the behavior of these toxic compounds. Homogenization techniques have been implemented for the numerical treatment of the model. ...

Numerical Homogenization in Multi-scale Models of Musculoskeletal Mineralized Tissues

A. Gerisch[1], S. Tiburtius[1], Q. Grimal[2], and K. Raum[3]
[1]Technische Universität Darmstadt, Darmstadt, Germany
[2]Laboratoire d’Imagerie Paramétrique, UPMC, Paris, France
[3]Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany

Musculoskeletal mineralized tissues (MMTs), e.g. bone, are hierarchical composite materials. Their effective elastic properties at different scales are of interest for computational studies of the MMT’s response to mechanical loading but also to realistically simulate implant osseointegration. We combine multi-scale and multi-modal experimental techniques with mathematical modelling of MMTs ...

Muscle-Electrode Interface Simulation

A. Altamirano, C. Toledo, A. Vera, R. Muñoz, and L. Leija
Centro de Investigacion y Estudios Avanzados
Instituto Politecnico Nacional

In this article, the aim is to study different types and forms of electromyography (EMG) electrodes, for bipolar configuration, and the electric interface with muscle phantom. COMSOL Multiphysics allows modeling shapes and contact surfaces. Surface and needle electrodes will be modeled. A number of different trials and combinations will be presented; exploring different geometric shapes and ...

Drug Distribution in the Human Eye

L. Murtomäki[1], T. Kainuvaara[1]
[1]University of Helsinki, Helsinki, Finland

Drug therapy of the posterior segment of an eye is very challenging due to the difficult accessibility. Modern drugs often are large molecules, such as peptides, antibodies or oligonucleotides which are administrated, e.g. by intravitreous injections which requires clinical conditions. Computer modeling can be helpful in designing new and less invasive routes of drug administration. COMSOL is ...

Microwave Inactivation of Bacteria Under Dynamic Heating Conditions in Solid Media

S. Curet[1], M. Mazen Hamoud-Agha[1]
[1]GEPEA, UMR 6144, CNRS, ONIRIS, Université de Nantes, Nantes, France

In this study, COMSOL®4.2a is used to model a microwave heating process in a TE10 rectangular waveguide. The sample consists of a small cylindrical Ca-alginate gel (D = 8 mm, H = 10 mm) inoculated with bacteria Escherichia Coli K12. The sample is placed along the microwave propagation direction into the waveguide. Maxwell’s equations and heat transfer are coupled to a microbial inactivation ...

The Effects of the Electrical Double Layer on Giant Ionic Currents through Single Walled Carbon Nanotubes

G. Zhang[1][,][2][,][3], S.L. Bearden [1]
[1]Department of Bioengineering, Clemson University, Clemson, SC, USA
[2]Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA
[3]Institute for Biological Interfaces of Engineering, Clemson University, Clemson, SC, USA

Electrofluidic transport through a single walled carbon nanotube (SWCNT) is enhanced by electroosmosis. Electroosmosis is made possible in these devices by the combination of a large slip length within SWCNTs and the interfacial potential at the solution/nanotube interface. A computational model of a SWCNT device was developed using COMSOL Multiphysics to investigate the complete electrical ...

Multiscale Electromagnetic Modeling of Contractions in the Pregnant Uterus - new

V. Tidwell[1], P. LaRosa[2], M. Zhang[1], H. Eswaran[3], A. Nehorai[1]
[1]Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
[2]Monsanto Company, Technology Pipeline Solutions, St. Louis, MO, USA
[3]OB/GYN Department, University of Arkansas for Medical Sciences, Little Rock, AR, USA

Uterine contractions during pregnancy are currently poorly understood – experts disagree on the mechanisms by which contractions propagate through the organ and the structural layout of the uterine muscle fibers. We have developed a multi-scale model of the uterus, at the cellular, tissue, and organ levels. By comparing simulated abdomen-level magnetic field readings from our model to clinical ...

Modelling of Thermally Induced Electrical Instabilities in Intestine using COMSOL Multiphysics®

A. Gizzi[1][3], C. Cherubini[1][2], S. Migliori[1][3], and S. Filippi[1][2]
[1]Nonlinear Physics and Mathematical Modeling Lab, Engineering Faculty, University Campus Bio-Medico, Roma, Italy
[2]International Center for Relativistic Astrophysics, University of Rome La Sapienza, Roma, Italy
[3]Alberto Sordi Foundation, Research Institute on Aging, Roma, Italy

Postoperative or paralytic Ileus (PI) is a temporary aftermath of major abdominal surgeries. PI prevents the passage of food throughout the lumen leading to bloating, distension, emesis and pain. A plausible mathematical model for this phenomenology physiologically fine tuned including thermal variations, is presented here. Using COMSOL Multiphysics the existing intestinal ionic model have been ...

Simulation of a Magnetic Induction Method for Determining Passive Electrical Property Changes of Human Trunk Due to Vital Activities

H. Mahdavi[1], J. Rosell Ferrer[1]
[1]Universitat Politècnica de Catalunya, Barcelona, Spain

The human body consists of many different types of tissues each with specific passive electrical properties. Vital activities lead to a characteristic change of these properties and geometrical changes. Magnetic induction is a non-contact method which can be used to determine these changes. The method is based on the creation of a primary magnetic field that will produce eddy currents in the ...