Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design of a Cylindrical Photobioreactor with Central Orifice for the Production of Microalgae - new

N. N. V. Ramirez[1], L. M. Raymundo[1], J. O. Trierweiler[1]
[1]Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil

It is desired to design a photobioreactor for the production of voluminous samples of microalgae for lipid quantification. The reactor should provide good growing conditions even with periodic withdrawal of samples. It also should be compact for better use of laboratory space. Therefore, a photobioreactor with concentric tubes was modeled to verify the circulation of the culture medium. The ...

High-Resolution FSI Modeling of a High-Aspect Ratio Involute Flow Channel in the HFIR at ORNL

A. I. Elzawawy [1], J. D. Freels [2], F. G. Curtis [2, 3],
[1] Vaughn College of Aeronautics and Technology, East Elmhurst, NY, USA
[2] Oak Ridge National Laboratory, Oak Ridge, TN, USA
[3] University of Tennessee, Knoxville, TN, USA

The high flow rate within the HFIR cooling water flow channel causes the fuel plates to deflect which in turn, changes the coolant flow characteristics. This nonlinear feedback loop between the coolant and the fuel plate is the focus of the present simulation of the fluid-solid interaction between the coolant flow and the fuel plates to accurately predict the plate’s deflection using the Fluid ...

Simulation of Constant-Volume Droplet Generators for Parallelization Purposes

D. Conchouso [1], A. Arevalo [1], D. Castro [1], Y. Ying [1], I. G. Foulds [2]
[1] King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
[2] School of Engineering, University of British Columbia - Okanagan, Vancouver, BC, Canada

To maintain same droplet size across parallel devices, new break-up strategies based on geometry are been studied. In this work, we model a geometrically-set droplet generator, in which the droplet break-up occurs by a block and break mechanism. In other words when the disperse phase blocks the path of the continuous phase, droplet formation occurs. The devices showed consistent droplet ...

Numerical Simulation of Granular Solids’ Behaviour: Interaction with Gas

A. Zugliano[1], R. Artoni[2], A. Santomaso[2], and A. Primavera[1]
[1]Danieli & C. Officine Meccaniche S.p.a., Buttrio, UD, Italy
[2]DIPIC, Università di Padova, Padova, Italy

In previous works a dissipative hydrodynamic model was used to simulate the behavior of a dense granular solid flowing through silos with simple geometries or with internal devices, showing good agreement with experimental results. That model has been upgraded taking into account the interaction between the solid itself and a nonreactive gaseous stream flowing countercurrent through it. This ...

Numerical Simulation of Forced and Static Smoldering Combustion

S. Singer[1], W. H. Green[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Transient, two-dimensional (axisymmetric) simulations of a cigarette subject to realistic static and forward smoldering cycles were performed. The computational domain consists of a porous packed bed of tobacco and a filter surrounded by a thin, porous paper and a region of surrounding air. The governing equations include overall mass conservation, momentum conservation, conservation equations ...

Optimization of Around-The-End Hydraulic Mixer Using COMSOL Multiphysics®

S. Mohammadighavam[1], B. Kløve[1]
[1]University of Oulu, Department of Process and Environmental Engineering ,Oulu, Finland

After rapid mixing of waste water and coagulant, an effective slow mixing during a reasonable retention time will cause to grow the size of flocs up which will settle out easily. Around-the-end hydraulic mixer with barriers is one of the efficient facilities that have been used in water treatment plants for this purpose. A uniform velocity gradient (G) is needed to achieve efficient mixing and ...

Effects of Flow and Diffusion on Blood Coagulation in Platelet Poor Plasma: a Two-way Coupling Between Hemodynamics and Biochemistry

D. Magnabosco[1,2], H. van Ooijen[2], B. Bakker[2], R. van den Ham[2]
[1]Politecnico di Milano, Milan, Italy
[2]Philips Research, Eindhoven, The Netherlands

Enzyme reactions, blood flow and diffusion in human vasculature play interacting and fundamental roles in blood coagulation. In this complex mechanism, the balance between blood and clot is a delicate equilibrium, whose tight regulation is vital to avoid pathologies such as bleeding and thrombosis. The secondary hemostasis triggered by tissue factor in platelet poor plasma is studied up to ...

Prediction of Air Permeability Using a Finite Element Method - new

A. Pezzin[1], A. Ferri[1]
[1]Politecnico di Torino, Torino, Italy

Air permeability is one of the most important parameters in the study of thermo-physiological comfort of fabrics. The main goal of this work is to develop a virtual process that allows the prediction of air permeability of any fabric without realizing a sample. The Free and Porous Media Flow physics interface was used in COMSOL Multiphysics® software; this allows to use Navier-Stokes equation ...

Benchmark Model: Natural Convection of Water-Aluminum Oxide Nanofluids in a Square Cavity

M. Z. Saghir [1], A. Ahadi [1], A. A. Mohamad [2],
[1] Department of Mechanical Engineering, Ryerson University, Toronto, ON, Canada
[2] Department of Mechanical Engineering, University of Calgary, Calgary, AB, Canada

Nanofluids is a new class of fluid consisting of particles in a liquid. Different base liquid has been proposed and the most common one is water. The concentration of these particles can range from 0.1% to 5% or greater. Different numerical models have been proposed to solve this interesting problem. Some scheme assumed the fluid as a single fluid and other assumed as a two phase system ...

The Analysis of the Conditions of Flow in the Tundish Performed by a Numerical and Physical Method

T. Merder [1], J. Jowsa [2], A. M. Hutny [2], J. Pieprzyca [1], M. Warzecha [2],
[1] Silesian University of Technology, Katowice, Poland
[2] Czestochowa University of Technology, Czestochowa, Poland

Studies of the liquid metal movement (hydrodynamic) in a real object (tundish) are substantially precluded due to the objective difficulties (high temperature and the size of metallurgical equipment), compared to their execution by the use of physical and numerical modeling. In presented study, two test methods for analyzing the flow and mixing of the liquid steel in the tundish were used. The ...