Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Enhanced Transient Modeling of Hybrid Photovoltaic Air (PVT) Module - new

R. Kiflemariam[1], M. Almaz[1], F. Zevallos[1], C. Lin[1]
[1]Department of Mechanical & Materials Engineering, Florida International University, Miami, FL, USA

A 2D transient heat conduction model was created in COMSOL Multiphysics® software to study the performance of photovoltaic-thermal (PVT) water system. The model captures the variation of important environmental and system parameters such as outside temperature, solar irradiation, air velocity and temperature. The model has a good agreement with experimental data for the photovoltaic cell ...

AC Electroosmosis and Dielectrophoresis for Trapping Spherical Particles between Rectangular and Triangular Electrodes

S. Narayan[1], H. Francis[1], S. Ghonge[1], D.N. Prasad[1], A. Sethi[1], S. Banerjee[1], S. Kapur[2]
[1]Department of Physics, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Andhra Pradesh, India
[2]Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Andhra Pradesh, India

We describe methods and results of simulations done for predicting behavior of particles in an aqueous solution under an applied AC electric field on electrodes of rectangular and triangular shapes. Here the two major effects which come into play are Dielectrophoresis and AC Electroosmosis. Two simulations have been presented, one for rectangular and one for triangular shaped electrodes. We have ...

Groundwater Flow and Solute Transport Modeling in the SFR Nuclear Waste Repository

E. Abarca[1], A. Idiart[1], O. Silva[1], L.M. de Vries[1], J. Molinero[1], F. Vahlund[2], H. von Schenck[2]
[1]Amphos21 Consulting, Barcelona, Spain
[2]Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden

The Swedish Nuclear Fuel and Waste Management Company (SKB) operates the underground repository for low- and intermediate-level nuclear waste (SFR) located in Försmark, Sweden. An extension of the SFR is planned to accommodate mainly waste arising from the decommissioning of Swedish nuclear power plants. The long-term safety assessment for the SFR repository takes into account the future ...

Computational Modelling of Fluid Dynamics in Electropolishing of Radiofrequency Accelerating Cavities - new

H. Rana[1], L. Ferreira[2]
[1]Loughborough University, Leicestershire, UK
[2]European Organisation for Nuclear Research (CERN), Genéve, Switzerland

Electropolishing is an electrochemical process that radiofrequency accelerating cavities undergo in order to improve their inner metal surface finishing. This is performed prior to their installation into particle accelerators, in order to enhance their accelerating properties. Using COMSOL Multiphysics® software it was possible to model the process throughout the cavity and study the fluid ...

Preliminary Study of Particle Trajectory and Secondary Flow in Bend Configurations to Reduce Erosion

O. Ayala [1], A. Arruda [2], L. Calembo [2], E. Enes [2], D. Monteiro [2], R. Paizante [2], A. Rocha [2], M. Simões [2], J. Michaeli [1],
[1] Department of Engineering Technology, Old Dominion University, Norfolk, VA, USA
[2] Brazil Scientific Mobility Program, CAPES, Brasilia, DF, Brazil

To the best of our knowledge, only few researchers have made attempts to minimize the erosion in bends by modifying the bend configuration in order to alter the particle-laden flow pattern to reduce the erosion. In this work, we revisited those previously proposed bend configurations to reduce erosion, in additional to two of our own design. We found that secondary flows play an important role ...

Simulation of Planar Wave Flagellar Propulsion of Nanorobots using COMSOL

N. Londhe, R. Majumdar, J. Rathore, and N. Sharma
Dept. of Mechanical Engineering
Birla Institute of Technology and Science
Pilani, Rajasthan

Nanorobots may be used in the advancement of medical technology, healthcare, and environment monitoring by swimming in biological fluids flowing in narrow channels of a few hundred nanometers in the area of bio-medical engineering. The pronounced effects in nanometer scale such as increased apparent viscosity and low Reynolds number make the designing of propulsion mechanism a challenging ...

Wind Flow Modeling of Area Surrounding the Case Western Reserve University Wind Turbine

M. Fernandes[1], D. Matthiesen[1]
[1]Case Western Reserve University, Cleveland, OH, USA

The CWRU Turbine is a research turbine located in a urban campus in Cleveland, Ohio. This location may create turbulence, resulting in a possible loss in energy generation. This research attempts to answers the question of whether the wind flow is affected by the buildings or not. The surrounding buildings, which vary in height from 20 to 40 meters, may affect the wind patterns at the hub ...

Numerical Study of a DC Electromagnetic Liquid Metal Pump: Limits of the Model

N. Kandev[1]
[1]Institut de recherche d'Hydro-Québec, Shawinigan, QC, Canada

This work presents the results of a 3D numerical magneto-hydrodynamic (MHD) simulation of an electromagnetic DC pump for liquid metal using a rectangular metal flow channel subjected to an externally imposed transversal inhomogeneous magnetic field. In this study. 3D numerical simulation based on the finite element method was carried out using the computer package COMSOL Multiphysics 3.5a. The ...

The Effect of Fuel and Oxidant Pumping on the Performance of a Membraneless Microfluidic Fuel Cell

A. F. Tayel [1], M. A. Fathallah [1], M. M. Elsayed [1],
[1] Department of Mechanical Engineering, Alexandria University, Alexandria, Egypt

For the commercialization of membraneless microfluidic fuel cell, voltage and minimum power demand for various applications need a precise selection of fuel and oxidant flow rates to achieve the optimum cell performance. A numerical study on a membraneless microfluidic fuel cell was made to determine the effect of Peclet (Pe) number on the overall performance of the fuel cell. A model of 1 mm ...

High Vacuum Gas Pumping and Boundary Coupling

M. Cavenago
INFN/LNL, Laboratori Nazionali di Legnaro, Legnaro, Italy

Many scientific instruments are based on high vacuum equipment with a gas pressure maintained in the order of 1 Pa or below. The gas flow in the low pressure limit, called the molecular flow regime, is a case of transport with zero viscosity. The ability to solve an integral equation on the boundary with finite elements methods allows us to find the gas densities and flows in the ...