See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Computational Fluid Dynamicsx

Mechanistic Modeling of Non-Spherical Bacterial Attachment on Plant Surface Structures

A. Warning [1], A. K. Datta [1],
[1] Cornell University, Ithaca, NY, USA

The particle tracking model provided a deeper understanding to the experimental results. The model showed good agreement with experimental data for rotation, transport and attachment. In the attachment model, protrusions create low velocity, low shear regions increasing attachment ... Read More

Fluid Motion Between Rotating Concentric Cylinders Using COMSOL Multiphysics® Software

P. L. Mills [1], K. Barman [1], S. Mothupally [1], A. Sonejee [1],
[1] Texas A&M University - Kingsville, Kingsville, TX, USA

Introduction Fluid flow patterns in research or process-scale equipment where a fluid is contained between concentric rotating cylinders in the absence of bulk axial flow has received notable attention in the field of fluid mechanics. Annular flows occur in many practical applications, ... Read More

Hydrodynamic Modeling of a Rotating Cone Pump Using COMSOL Multiphysics® Software

P. L. Mills [1], A. Uchagawkar [1], M. Vasilev [1],
[1] Texas A&M University - Kingsville, Kingsville, TX, USA

Introduction Velocity profiles in liquid films flowing over rotating conical surfaces are of considerable interest in industry. The efficiency of important process equipment, such as spinning cone columns, fluid degassers, centrifugal disc atomizers, centrifugal film evaporators, and ... Read More

Control the Poly-Dispersed Droplet Breakup Mode in a Droplet-based Microfluidic Device by External Electric Field

Y. Li [1], K. Nandakumar [1], M. Jain [1],
[1] Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA

Droplet–based microfluidics has received special research attentions in last two decades due to its superior control over fluid flow as well as other unique advantages[1]. By introducing two immiscible fluids into microfluidic systems, the reagent fluid is encapsulated inside discrete ... Read More

FEM Convergence for PDEs with Point Sources in 2-D and 3-D

M. Gobbert [1], K. M. Kalayeh [2], J. S. Graf [1],
[1] Department of Mathematics and Statistics, University of Maryland - Baltimore County, Baltimore, MD, USA
[2] Department of Mechanical Engineering, University of Maryland - Baltimore County, Baltimore, MD, USA

Numerical theory provides the basis for quantification of the accuracy and reliability of a FEM solution by error estimates on the FEM error vs. the mesh spacing of the FEM mesh. This paper presents techniques needed in COMSOL Multiphysics® software to perform computational studies for ... Read More

Advanced Multiphysics Thermal Hydraulic Models for the High Flux Isotope Reactor

P. K. Jain [1], J. D. Freels [1],
[1] Oak Ridge National Laboratory, Oak Ridge, TN, USA

Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium fuel are ongoing at ORNL as part of an effort sponsored by the U.S. Global Threat Reduction Initiative program. HFIR is a very high flux, ... Read More

Preliminary Study of Particle Trajectory and Secondary Flow in Bend Configurations to Reduce Erosion

O. Ayala [1], A. Arruda [2], L. Calembo [2], E. Enes [2], D. Monteiro [2], R. Paizante [2], A. Rocha [2], M. Simões [2], J. Michaeli [1],
[1] Department of Engineering Technology, Old Dominion University, Norfolk, VA, USA
[2] Brazil Scientific Mobility Program, CAPES, Brasilia, DF, Brazil

To the best of our knowledge, only few researchers have made attempts to minimize the erosion in bends by modifying the bend configuration in order to alter the particle-laden flow pattern to reduce the erosion. In this work, we revisited those previously proposed bend configurations to ... Read More

Permeability in Fragmented Materials and its Application to Underground Mining

S. Palma [1], R. Castro [1], A. Hekmat [1],
[1] Mining Engineering Department, Block Caving Laboratory, University of Chile, Santiago, Chile

The block caving mine is considered by the mining industry as one of the natural replacements of the current open cut mines in the near future. The block caving technique is based on the extraction of small broken rocks, created by blasted initially large solid rocks, and the fracture of ... Read More

CFD Analysis of a Printed Circuit Heat Exchanger

K. Wegman [1], X. Sun [1],
[1] Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, OH, USA

In this experiment, the performance of a Printed Circuit Heat Exchanger (PCHE) was studied using COMSOL Multiphysics® software. PCHEs are diffusion bonded heat exchangers containing semicircular, chemically etched flow paths. Helium was used as the working fluid on both the hot and cold ... Read More

Modeling Conventional Swing of a Cricket Ball

R. Latchman [1], A. Pooransingh [1],
[1] University of the West Indies - St. Augustine, St. Augustine, Trinidad and Tobago

Conventional swing is one phenomenon which a bowler uses to gain an advantage over the batsman. This study involved simulating conventional swing in the CFD Module of COMSOL Multiphysics® software and comparing the simulated results with experimental results of previous researchers. The ... Read More