Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Model for Leaching and Transporting Behavior of Radiocesium in MSW Landfill

H. Ishimori[1], K. Endo[2], H. Sakanakura[2], M. Yamada[2], M. Osako[2]
[1]Ritsumeikan University, Kusatsu, Shiga, Japan
[2]National Institute for Environmental Studies, Tsukuba, Ibaraki Prefecture, Japan

This paper presents the numerical simulation model for radiocesium leaching and transporting behavior in municipal solid waste (MSW) landfill and discusses on the design for the required geometry and properties of the impermeable final cover and the soil sorption layer, which work for containment of hazardous waste such as radiocesium-contaminated MSW generated by Fukushima Daiichi nuclear ...

Solution of Poroelastic Equations with Different Base Variables Using Equation-based Modeling

M. H. Akanda [1], Y. Cao [1], A. J. Meir [1],
[1] Department of Mathematics & Statistics, Auburn University, Auburn, AL, USA

Poroelasticity equations describe the interaction between fluid flow and solids deformation within a porous medium. Modeling of poroelasticity is coupling between elastic deformation of porous materials and Darcy’s law. Poroelasticity has numerous real world applications such as in reservoir engineering, bio-engineering, environmental engineering etc. We have used quasi-static poroelastic ...

Investigating the Impacts of Hydrogeological Parameters on DSI Efficiency through Numerical Simulation

Y. Jin[1], E. Holzbecher[1], S. Ebneth[2]
[1]Department of Applied Geology, GZG, Georg-August- University of Göttingen, Göttingen, Germany
[2]Hölscher Wasserbau, Haren, Germany

Düsensauginfiltration (DSI),‘nozzle-suction-infiltration’, is a new method for dewatering that avoids groundwater abstraction from the aquifer. Drawdown is achieved via pumping of groundwater at upper abstraction section, meanwhile, all the pumped water is injected through the same borehole, but in greater depth. We use COMSOL Multiphysics® for the development of a 2D model that simulates ...

Analytical Solution for the Steady Poroelastic State under Influence of Gravity

E. Holzbecher [1],
[1] German University of Technology in Oman, Muscat, Oman

Studies of poroelastic systems increasingly utilize numerical modeling. Especially for geotechnical applications models are set up as a tool to understand phenomena in porous media that deform due to changes of the hydraulic regime, or in which the flow field is affected by changes of the stress regime. Major application fields are waste injection, CO2 injection and steam assisted gravity ...

Inverse Analysis of Soil Parameters Based on Deformation of a Bank Protection Structure

Y. Xing [1], R. Hu [2], Q. Liu [1],
[1] Geoscience Centre, University of Goettingen, Goettingen, Germany
[2] School of Earth Science and Engineering, Hohai University, Nanjing, China

Deformation prediction is an important part of the structure stability analysis. However, the deformation of bank protection structure which is affected by many factors, such as structural stiffness, earth pressure and hydrostatic pressure. It contains a complex mechanical process, which is a grey, fuzzy, stochastic and nonlinear engineering problem[1]. Neural network method as one of nonlinear ...

COMSOL Modeling of a Submarine Geothermal Chimney

M. Suárez [1], and F. Samaniego [2]
[1]Faculty of Sciences, Michoacán University (UMSNH), Morelia, Michoacan, Mexico
[2]Faculty of Engineering Postgrade Studies Division, National University of Mexico (UNAM), Mexico City, Mexico

New geothermal energy sources hold promise for the future. Deep submarine geothermal energy related to hydrothermal vents is emerging in many places along the oceanic spreading centers. Shallow submarine geothermal systems are found near to continental platforms. We present the initial development of mathematical models to simulate the energy transport in submarine systems. A model for the ...

Finite-Element Evaluation of Thermal Response Tests Performed on U-Tube Borehole Heat Exchangers

E. Zanchini, and T. Terlizzese
[1]Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, Università di Bologna, Bologna, Italy

The results of two thermal response tests recently performed on two vertical borehole heat exchangers (BHEs) are presented. The BHEs have the same cross section and a depth of 100 m and 120 m respectively. The evaluation of the thermal properties of the ground and grout are performed by a finite-element simulation method, developed through the software package COMSOL Multiphysics 3.4.

Numerical Simulations of Radionuclide Transport through Clay and Confining Units in a Geological Repository using COMSOL

J. Hansmann[1], M. L. Sentis[1], B. J. Graupner[1], A.-K. Leuz[1], C. Belardinelli[2]
[1]Swiss Federal Nuclear Safety Inspectorate (ENSI), Brugg, Switzerland
[2]Kantonsschule Solothurn, Solothurn, Switzerland

Introduction: The sectoral plan that defines the procedure and criteria of site selection for deep geological repositories for all categories of waste (high-level and low- and intermediate-level waste) in Switzerland started in 2008 and will last for about ten years. ENSI (Swiss Nuclear Safety Inspectorate) is in charge of reviewing the proposals and safety assessments for geological ...

Can we use Aquifers to Monitor Magma Chambers? Using COMSOL Multiphysics® to Investigate Subsurface Strain Changes and Their Effect on Hydrological Systems - new

K. Strehlow[1], J. Gottsmann[1], A. Rust[1]
[1]University of Bristol, Bristol, UK

Groundwater-bearing geological layers respond to and modify the surface expressions of magmatic activity, and they can also become agents of volcanic unrest themselves. Interpretations of unrest signals as groundwater responses to changes in the magmatic system can be found for many volcanoes and include a wide range of phenomena and suggested processes to explain them (e.g., Newhall et al., ...

Numerically Generated g-functions for Ground Coupled Heat Pump Applications

J. Acuna[1], M. Fossa[2], P. Monzó[1]
[1]KTH Energy Technology, Stockholm, Sweden
[2]Dime, University of Genova, Genova, Italy

Ground-coupled heat pumps (GCHP) are successfully installed since at about 20 years in many countries to fulfill space conditioning requirements in building applications. In most cases the heat pump is connected to a system of vertical ground heat exchangers (as illustrated in Figure 1) where a fluid is circulated inside a system of pipes inserted in a deep borehole drilled in the soil. Drilling ...