Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Modeling of the Near-Subsurface Temperature Distributions in the Presence of Time Varying Air Temperature in the Boundary Condition and Space Varying Temperature for the Initial Condition - new

M. Ravi[1], D. V. Ramana[1], R. N. Singh[1]
[1]CSIR - National Geophysical Research Institute, Hyderabad, Telangana, India

The subsurface thermal structure in presence of groundwater recharge/discharge has been obtained by applying the Robin type boundary condition at the earth’s surface. The Robin type boundary condition involves the effect air temperatures at the surface which are taken as exponentially varying with time and the initial condition which is taken as exponential function of depth. The numerical ...

Numerical Simulation of Quasi-steady-state Gas Flow in a Landfill

Q. Zheng [1],
[1] Zhejiang University, Hangzhou, Zhejiang, China

Landfill is currently the most dominating method to dispose wastes, which are caused by the lives of residents and constructions of cities and towns. Because of large amounts of organic substances in landfills, they will undergo continuous microbial degradation, which generates a lot of landfill gas. The gas consists mainly of CH4, CO2, O2 and N2, and it is also a promising source of renewable ...

A Semplified Model for the Evolution of a Geothermal Field

L. Meacci[1], A. Farina[1], F. Rosso[1], I. Borsi[1], M. Ceseri[1], and A. Speranza[1]


[1]Dipartimento di Matematica U. Dini, Università degli Studi di Firenze, Firenze, Italy

The problem is to understand how a geothermal field can evolve from a water dominated state into a vapor dominated one. A first answer to this question is given by a simplified mathematical model of the dynamics of a geothermal field in which the geothermal fluid is entirely composed by pure H2O. We considered a 1-D geometry and we developed a dynamic model that presents a clear interface ...

An Extension of Lauwerier’s Solution for Heat Flow in Saturated Porous Media

S. Saeid[1] and F.B.J. Barends[2]
[1]Technical University of Delft, Delft, The Netherlands
[2]Deltares and TU-Delft, Delft, The Netherlands

One of the crucial topics in this century is sustainable energy. In this respect, the exploitation of geothermal energy from deep hot aquifers becomes opportune. Hence, insight is required in the heat balance of potential aquifer systems. Essential issues are convection, conduction and dispersion. This article focuses on Lauwerier’s problem. As an extension, it is suggested that beside ...

Use of COMSOL as an Educational Tool Through its Application to Ground Water Pollution

A. Modaressi-Farahmand-Razavi[1]
[1]MSS-Mat Laboratory, CNRS, Ecole Centrale Paris, Châtenay Malabry, France

Ensuring the quality of underground water and controlling its quantity is of major concern for the population. Therefore, this subject attracts many students from different specialties at different levels of their curriculum. In fact, the pedagogic objectives of the course may be different according to the level or/and interest of the students and COMSOL is used due to its versatility. In this ...

Safe Storage Parameters During CO2 Injection Using Coupled Reservoir-Geomechanical Analysis

T.I. Bjørnarå[1], E. Aker[1], and E. Skurtveit[1]
[1]NGI, Oslo, Norway

Safe short term storage of CO2 depends mainly on structural and solubility trapping. On longer term, mineral trapping is also contributing to the trapping of CO2. To be able to investigate the importance of these different storage mechanisms, a finite element model for simulation of CO2 injection has been developed in COMSOL Multiphysics®. The model describes and solves for two-phase flow ...

COMSOL Multiphysics, TOUGHREACT and Numerrin Comparison in Some Modelling Tasks of Spent Nuclear Fuel Disposal

A. Itälä[1], V-M. Pulkkanen[1], M. Laitinen[2], M. Tanhua-Tyrkkö[1], and M. Olin[1]
[1]VTT Technical Research Centre of Finland, Espoo, Finland
[2]Numerola Oy, Jyväskylä, Finland

Bentonite clay is used as a protecting barrier around both the copper capsules in deposition holes and in deposition tunnels in the KBS-3 final disposal concept for spent nuclear fuel. The performance of these bentonite barriers will be investigated both experimentally and by modelling. Both approaches are needed, because for example the time span in question (hundred thousand years or even ...

Coupled Gas Flow and Thermal and Reactive Transport in Porous Media for Simulating Waste Stabilization Phenomena in Semi-Aerobic Landfill

H. Ishimori, K. Endo, T. Ishigaki, H. Sakanakura, and M. Yamada
National Institute for Environmental Studies
Tsukuba, Ibaraki
Japan

Semi-aerobic landfill has interesting structure that passively provides the atmospheric oxygen into landfilled waste due to the heat convection generated by the decomposition of landfilled waste. There are limited studies on the mechanisms of the oxygen transport. This paper presents the governing equations and parameter estimation methods for the numerical simulation of the gas fluid flow and ...

Impact Assessment of Hydrologic and Operational Factors on the Efficiency of Managed Aquifer Recharge Scheme

M.A. Rahman[1], P. Oberdorfer[1], Y. Jin[1], M. Pervin[1], E. Holzbecher[1]
[1]Department of Applied Geology, Geoscience Center, University of Göttingen, Göttingen, Lower Saxony, Germany

Due to increased demands on groundwater accompanied by increased drawdowns (ca. 2-3 meters/year), technologies that use alternative water resources have been suggested for Dhaka City, Bangladesh. Preliminary studies show that managed aquifer recharge (MAR) would help in optimal use of available water resources and to reduce adverse effects of pumping in the Dupitila aquifer of the city. In this ...

Magnetotelluric Response Distortion Over Rugged Topography

D. Rizzello[1], P. Canepa[1], E. Armadillo[1]
[1]DISTAV - University of Genova, Genova, Italy

Topographic effects on magnetotelluric responses may be severe on rugged terrains. Finite elements simulation is a valuable tool to quantify this effect, due to its capability to match real morphologies. To do the estimate of the distortion, the AC/DC Module of COMSOL has been employed, using a model of homogeneous resistivity on which a DEM (Digital Elevation Model) profile of the Deep Freeze ...