Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Thermo Mechanical Analysis of Divertor Test Mock-up using COMSOL Multiphysics

Y. Patil[1], D. Krishnan[1], S. S. Khirwadkar[1]
[1]Institute for plasma research, Bhat, Gandhinagar, Gujarat, India

Divertor is act as an exhaust for the nuclear fusion reactor. Main function of a divertor is to remove the heat flux from the plasma. Plasma facing components of the divertor are made up of Carbon (Graphite/CFC) and tungsten like materials[1]. Hence these materials are exposed to the transient heat loads up to 10MW/m^2. Thermo mechanical behavior of Graphite test mock-up under the transient heat ...

Flow Analysis and Optimization of a Hierarchical Plate Heat Exchanger for an Adsorption Heat Pump

E. Tempfli[1], F.P. Schmidt[1]
[1]Karlsruhe Institute of Technology (KIT), Fluid Machinery (FSM), Karlsruhe, Germany

The paper investigates the hydrodynamic performance of a hierarchical parallel channel network for the objective of optimal thermal coupling to heat released in the adsorption processes, as in adsorption heat pumps. More specifically, the uniformity of the fluid flow over the network is improved by optimizing the topology of the manifold channels of the two hierarchical levels. For this purpose ...

Modeling of Fluid Flow and Heat Transfer During a Steam-Thermolysis Process for Recycling Carbon Fiber Reinforced Polymer

A. Oliveira Nunes[1], Y. Soudais[1], R. Barna[1], A. Bounacer[1], Y. Yang[1]
[1]Centre RAPSODEE - Ecole des Mines d'Albi, Albi, France

Different types of technologies to recycle carbon fiber reinforced polymer (CFRP) waste have been studied, for example: pyrolysis, solvolysis and steam-thermolysis. The steam-thermolysis is a process that combines pyrolysis and superheated steam at atmospheric pressure to decompose the organic matrix of the composite. The waste is introduced into a bench-scale reactor heated at high temperatures ...

The Hygro-Thermal Improvement of a Mounting System to Fasten Roof Workmen to Flat Roofs - new

H. L. Schellen[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

A Dutch firm manufactures a mounting system to fasten roof workmen to the roof of a flat roof building to prevent them from falling down from the roof. The system is mounted to the flat roof afterwards, i.e. after the completion of the thermal insulated roof. Because of the mechanical strength and stiffness properties of the system, it is manufactured using (stainless) steel. The steel, ...

Multiphysics Study into Compression Rings, Coated Against Uncoated - new

M. Dickinson[1,2], N. Renevier [1], J. Calderbank[2,3]
[1]The Jost Institute, School of Computing, Engineering & Physical Sciences, University of Central Lancashire, Preston, UK
[2]Racing to Research Team, School of Computing, Engineering & Physical Sciences, University of Central Lancashire, Preston, UK
[3]School of Computing, Engineering & Physical Sciences, University of Central Lancashire, Preston, UK

Internal combustion engine components have been a main research interest over many decades. The structural mechanics and dynamics of the piston rings has been a large focus of work in order to gain a greater understanding of the how the piston ring dynamics affect the piston ring. Piston rings are often coated to reduce the level of wear on the ring as they will suffer substantial levels of ...

COMSOL Multiphysics® Simulation of Energy Conversion and Storage Concepts Based on Oxide Crystals - new

C. Cherkouk[1], M. Zschornak[1], J. Hanzig[1], M. Nentwich[1], F. Meutzner[1], M. Urena[1], T. Leisegang[2], D. C. Meyer[1]
[1]Institute of Experimental Physics, Technische Universität Bergakademie, Freiberg, Germany
[2]Fraunhofer-Technologiezentrum, Freiberg, Germany

A mathematical model based on a finite element method (FEM) is presented as an initial approach for a system converting waste heat energy into chemical energy. This system consists of a pyroelectric LiNbO3 plate placed into a cylinder which undergoes a laminar water flow with an appropriate periodic heat source. It solves the heat transfer equation in non-isothermal flow, where the density of ...

Heat Propagation Improvement in YBCO-Coated Conductors for Superconducting Fault Current Limiters - new

D. M. Djokic[1], L. Antognazza[1], M. Abplanalp[2], M. Decroux[1]
[1]DPMC, University of Geneva, Geneva, Switzerland
[2]ABB Corporate Research Centre, Dättwil, Switzerland

YBCO Coated Conductors (CCs), used for applications in Resistive Superconducting Fault Current Limiters (RSFCLs), are known to have insufficiently high Normal Zone Propagation Velocity (NZPV) during quench events. The improvement can be made by enhancing the thermal conductivity of YBCO-CCs with no decrease in the electrical resistivity. We studied the advantage of multilayered structures grown ...

Local Conduction Heat Transfer in U-pipe Borehole Heat Exchangers

J. Acuna[1] and B. Palm[1]

[1]Department of Energy Technology, KTH, Stockholm, Sweden

The most common way to exchange heat with the bedrock in Ground Source Heat Pump (GSHP) applications is circulating a fluid through a U-formed closed loop in vertical boreholes drilled several tenths of meters into the ground. This study presents and compares the results of eight cross sectional U-pipe Borehole Heat Exchanger configurations. Values from recent experimental temperature ...

A Numerical Investigation on Active Chilled Beams for Indoor Air Conditioning

G. Cammarata, and G. Petrone
Department of Industrial and Mechanical Engineering, University of Catania, Catania, Italy

In this study fluid-dynamical and thermal performance of active chilled beams is investigated by 2D and 3D modelling in COMSOL Multiphysics. Three different typologies of those air conditioning systems are considered. Results, obtained for typical range of variation of operational conditions, are principally produced as temperature and velocity distributions. Special attention is paid to the ...

Perforation Effect on a Rectangular Metal Hydride Tank for Hydriding and Dehydriding Process

E. Gkanas[1][2], S. Makridis[1][2], E. Kikkinides[1], A. Stubos[2]
[1]Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece
[2]Environmental Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR 'Demokritos', Agia Paraskevi, Athens, Greece

Hydrogen storage in a metal hydride bed, uses an intermetallic alloy that can absorb efficiently high amounts of hydrogen by chemical bonding resulting to metal hydrides. This alloy is capable of absorbing and desorbing hydrogen while maintaining its own structure. The heat, mass and momentum transfer in a metal-hydride reactor is mathematically described by energy, mass and momentum balance ...