Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Development of Surface Micromachinable Capacitive Accelerometer using Fringe Electrical Field

S. Aoyagi1, and Y.-C. Tai2
1Robot & Microsystem Laboratory, Kansai University, Osaka, Japan
2Caltech Micromachining Laboratory, California Institute of Technology, Pasadena, USA

A new type of accelerometer is demonstrated which consists of a dielectric seismic mass and a comb-shaped planar capacitor underneath it. The simple structure of the device allows the use of polymer Parylene as the proof mass, so the technology is greatly simplified and only surface micromachining is required. The measuring principle is detecting capacitance change according to the dielectric ...

Microfluidic Separation System for Magnetic Beads

F. Wittbrach, A. Weddemann, A. Auge, and A. Hütten
Department of Physics, Bielefeld University, Germany

It is possible to control the motion of magnetic beads using a combination of hydrodynamic and electromagnetic forces. In this work, we investigate the possibility to manipulate the motion of beads with different magnetic moments in a special microfluidic structure so as to separate them. We also experimentally prove that this structure is a suitable device to separate beads and show that ...

Simulation of Highly Nonlinear Electrokinetics Using a Weak Formulation

G. Soni[1], T. Squires[2], and C. Meinhart[1]

[1]Department of Mechanical Engineering, University of California Santa Barbara, CA, USA
[2] Department of Chemical Engineering, University of California Santa Barbara, CA, USA

We present a numerical model for simulating highly nonlinear electrokinetic phenomena, which occurs at high zeta potentials. In this model, the electric double layer is realized by solving a partial differential equation (PDE) on the double-layer-inducing surface. We also allow for a nonlinear surface capacitance, which relates the surface charge density to the zeta potential of the surface. With ...

Design and Analysis of Micro-tweezers with Alumina as Gripper Using COMSOL Multiphysics

V. S. Selvakumar, M. S. Gowtham, M. Saravanan, S. Suganthi, and L. Sujatha
Rajalakshmi Engineering College
Chennai, India

Micro-tweezers have been widely investigated because of their extensive applications in micro-fluidics technology, microsurgery and tissue-engineering. It has been reported that thermal actuation provides greater forces and easier control when compared to electrostatic micro actuation. In this paper, we discuss about the effects of Alumina as gripper on the operation of micro tweezers. The ...

Modeling and Simulation of MEMS Based 3D Vibrating Gyroscope for Mobile Robotics Applications

M. Ramya, R. P. S. Valli, R. Vidya, G. Anju, and M. Alagappan
PSG College of Technology
Tamil Nadu, India

In this study, a biomimetic vibrating 3D MEMS Gyroscope is designed, consisting of two circular diaphragms with a club shaped structure placed over one of them. This MEMS based vibrating gyroscope was modeled and simulated using COMSOL Multiphysics 4.1 - MEMS module. The purpose of the research was to develop an effective gyroscope for guidance and control of mobile robots. The simulated ...

A Study of Geometrical Shape of Central Plate in Electrostatic Actuation

K. M. V. Swamy[1], B. G. Sheeparamatti[1], G. R. Prakash [1]
[1]Department of Electronics and Communication, Basaveshwara Engineering College, Bagalkot, Karnataka, India

This study is performed to know which central plate geometry is best suited for electrostatically actuated switch. The simulation is carried out in COMSOL Multiphysics, where user is free to model the geometry without depth knowledge about geometrical dependency of electrostatic. The study of the centrally suspended geometrical models such as circle, square and rectangle suspended by two short ...

Study of Fluid Dynamics and Heat Transfer in MEMS Structures

S. N. Das[1], G. Bose[2]
[1]Centurion University of Technology and Managment, Jatani, Bhubaneswar, Orissa, India
[2]Institute of Technical Education and Research, SOA University, Bhubaneswar, Orissa, India

This paper describes the characteristics of MEMS microchannel and various issues of its designing. Here the major parameters are pressure drop and heat transfer rate. Various structures are modeled and optimized to get a minimum pressure drop and maximum heat transfer rate. The simulation results provide the characterization for Temperature, Mass flow rate, Pressure drop and Reynolds number. Here ...

COMSOL Multiphysics Applied to MEMS Simulation and Design

Dr. Piotr Kropelnicki[1]
Mu Xiao Jing[1]
Wan Chia Ang[1]
Cai Hong[1]
Andrew B. Randles[1]

[1]Institute of Microelectronics, Agency for Science, Technology and Research, Singapore, Singapore

In this research, we performed multiple COMSOL Multiphysics® simulations. We analyzed the dispersion curves of waves in a LAMB wave pressure sensor; simulated a thin metal film in a microbolometer and observed the resulting stress; investigated the thermal behavior of an acoustic wave microbolometer; and modeled the fluid-structure interaction (FSI) for piezoelectric-based energy harvesting from ...

Multiphysics Modelling and Simulation of Implantable Wireless MEMS Capacitive Sensor for Cardiovascular Diagnostics

R.Yogeswari[1], S.Venkateshwaran [1], K.Umapathi[1]
[1]United Institute of Technology,Coimbatore,Tamil Nadu, India

Monitoring the Central aorta is a more effective way to diagnose cardiovascular diseases than conventional techniques. Approximately, six million people in the world are currently living with aortic aneurysm and every year 750,000 new cases are diagnosed. This paper presents the design and simulation of biocompatible Wireless MEMS sensor for detection of intraoperative leaks of the stent graph ...

Particle Flow Control by Magnetically Induced Dynamics of Particle Interactions

F. Wittbracht[1], A. Weddemann[1], A. Auge[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In this work, we show that dipolar magnetic coupling can be used to control the particle flow through microfluidic structures without changing the state of motion of the carrier liquid. Also no external magnetic gradient fields are employed; the total external magnetic force applied is therefore zero. The theoretical idea will be tested experimentally. Here, additional effects originating from ...

Quick Search