Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Optimizing the Design of Polymer based Unimorph Actuator using COMSOL Multiphysics

V. Tiwari[1], R. Sharma[1], G. Srivastava[1], R. Dwivedi[1]
[1]Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India

Cantilever beam-type transducers have been in great demand and explored widely in the recent years, typically in thin film form because of their sensor and actuator applications. The piezoelectric cantilever is the most preferred structure employed in technological applications. Depending on the required flexural motion and sensitivities, these piezoelectric cantilevers can be used in unimorph, ...

Modeling and Simulation of the Rapid and Automated Measurement of Biofuel Blending in a Microfluidic Device under Pressure Driven Flow using COMSOL Multiphysics®

Sanket Goel[1], Venkateswaran PS[1], Rahul Prajesh[2], Ajay Agarwal[2]
[1]University of Petroleum & Energy Studies, Bidholi, Prem Nagar, Dehradun, India
[2]CSIR - Central Electronics Engineering Research Institute,(CSIR-CEERI) Pilani, India

• Real-time detection and monitoring of bio-fuel blend-ratio and adulterated automobile fuels by a reproducible micro-fabrication process in a cost-and-time efficient manner. • COMSOL Multiphysics® simulations and modelling of Viscosity based Laminar Flow inside a Y-shaped Micro-fluidic Device. • Design and Fabrication of a polymer Y-shaped Micro-fluidic Device to work as Micro-Viscometer for ...

Near-Wall Dynamics of Microbubbles in an Acoustical Trap - new

L. Wright[1], G. Memoli[1], P. Jones[2], E. Stride[3]
[1]National Physical Laboratory, Teddington, UK
[2]University College London, London, UK
[3]University of Oxford, Oxford, UK

Understanding the interactions between microbubbles and surfaces is key to the successful deployment of microbubbles in a range of applications. Two important examples are their use as a drug delivery mechanism, and their potential use of acoustically-driven bubbles as microscale sensors. Drug delivery with bubbles involves sonication at high frequency close to a boundary, and sensing with ...

Study of Fluid and Mass Adsorption Model in the QCM-D Sensor for Characterization of Biomolecular Interaction

H.J. Kwon[1], C.K. Bradfield[1], B.T. Dodge[1], and G.S. Agoki[1]
[1]Department of Engineering and Computer Science, Andrews University, Berrien Springs, Michigan, USA

Increasing attention has been paid to application of the quartz crystal microbalance with dissipation (QCM-D) sensor for monitoring biomolecular interactions. This paper focuses on a practical application of protein-protein binding affinity measurement at low concentrations and minimal sample sizes (50-200 μl of 20-200 nM), which results in low signal measurement. A model simulating fluid ...

Designing Piezoelectric Interdigitated Microactuators using COMSOL

O. Myers [1], M. Anjanappa [2], and C. Freidhoff [3]

[1] Mississippi State University, Mississippi State, MS, USA
[2] University of Maryland Baltimore County, Baltimore, MD, USA
[3] Northrop Grumman Corporation, Electronics Systems Sector, Baltimore, MD, USA

This paper presents a methodology towards designing, analyzing and optimizing piezoelectric interdigitated microactuators using COMSOL Multiphysics. The models used in this study were based on a circularly interdigitated design that takes advantage of primarily the d33 electromechanical piezoelectric constant coefficient. Because of the symmetric nature of the devices, 2D axisymmetric models ...

Polymer Nanowire based Impedance Biosensor

N. Das[1], C. R. Chaudhuri[1]
[1]Department of Electronics and Telecommunication, BESUS, Howrah, West Bengal, India

In this paper, we have proposed an impedance biosensor based on polymer nanowire (made of polyaniline) for efficient electric field mediated capture of biomolecules. Existing polymer nanowire based biosensors fail to achieve high sensitivity for low surface to volume ratio as the whole length of the nanowire is exposed to the analyte .Also biosensors are dependent on diffusion mediated capture ...

Stress Induced by Silicon-Germanium Integration in Field Effect Transistors

R. Berthelon [1], D. Dutartre [1], F. Andrieu [2]
[1] STMicroelectronics, France
[2] CEA Leti, France

The integration of high level of stress in field effect transistors is performed through incorporation of intrinsically strained SiGe layers. With the help of COMSOL simulations, we performed two studies addressing the level of stress in the area of interest. In the first case, we analyzed the geometric effects of the SiGe film stress relaxation on the edges. In a second time, we studied the ...

Thickness Optimization of a Piezoelectric Converter for Energy Harvesting

M. Guizzetti[1], V. Ferrari[1], D. Marioli[1], and T. Zawada[2]


[1]Dept. of Electronics for Automation, University of Brescia, Brescia, Italy
[2]Meggitt, Ferroperm Piezoceramics A/S, Kvistgaard, Denmark

The conversion of mechanical energy from environmental vibrations into electrical energy is a key point for powering sensor nodes toward the development of autonomous sensor systems. Piezoelectric energy converters realized in a cantilever configuration are the most studied for this purpose. In order to improve the performances of the converter, the geometry has to be properly designed. In this ...

Kinetic Investigation of a Mechanism for Generating Microstructures on Polycrystalline Substrates Using an Electroplating Process

T. Soares[1], H. Mozaffari[2], H. Reinecke[1]
[1]Universität Freiburg, Freiburg im Breisgau, BW, Germany
[2]Hochschule Furtwangen, Tuttlingen, BW, Germany

The purpose of this study is to understand the growth mechanism of copper (Cu) films on a Cu-Zn system substrate with a pre-defined pattern. The pattern was defined by conducting a selective etching process on a two-phase polycrystalline substrate. As a result of this process, there were etched regions correspondent to beta-phase crystals and quasi non-etched regions that belong to alpha-phase ...

Simple Finite Element Model of the Topografiner - new

H. Cabrera[1], D. A. Zanin[1], L. G. De Pietro[1], A. Vindigni[1], U. Ramsperger[1], D. Pescia[1]
[1]Laboratory for Solid State Physics, ETH Zürich, Zürich, Switzerland

In our recent experiments we are revisiting the topografiner technology for the imaging of surface topography with a resolution of a few nanometers. In these new technique called Near-Field Emission Scanning Electron Microscopy (NFESEM), low-energy electrons are emitted from a polycrystalline tungsten tip via electric-field assisted tunneling. In order to characterize and improve the ...