See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
Optics, Photonics and Semiconductorsx

Optimal Design for the Grating Coupler of Surface Plasmons

Y. Huang

Mathematics Department, University of California, Los Angeles, CA, USA

We present an optimization procedure to optimize the maximum coupling of free space optical wave to surface plasmon. Shape derivative from shape sensitivity analysis is calculated, and the corresponding partial derivatives of the objective functional with respect to finite number of ... Read More

Simulations of Negative Curvature Hollow-core Fiber new

J. Zhang[1], Z. Wang[1], J. Chen[1]
[1]College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan, China

COMSOL Multiphysics® software was used to simulate and analyze the transmission attenuation spectra of the negative curvature hollow-core fiber (NCHCF) over the wavelength from 2.7 μm to 4.2 μm. The effect of thickness of capillaries and the effect of the distance between the capillaries ... Read More

COMSOL Multiphysics® Software as a Metasurfaces Design Tool for Plasmonic-Based Flat Lenses

B. Adomanis [1], D. B. Burckel [2], M. Marciniak [1],
[1] Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
[2] Sandia National Laboratories, Albuquerque, NM, USA

Introduction: Flat lenses require precise control of a phase gradient across an interface, which is enabled through the application of engineered surfaces, such as Metasurfaces [1]. Periodic arrays of plasmonic antennas have been utilized to generate this desired phase gradient, which ... Read More

Simulations of nanophotonic waveguides and devices using COMSOL Multiphysics

Z. Zheng
School of Electronic and Information Engineering, Beihang University, Beijing, China

Design and optimization of the nanophotonic devices are critical in realizing advanced photonic integrations in the future. COMSOL can be used for simulating various types of nanophotonic devices involving different materials and dimensions. This report talks about some recent work of ... Read More

Simulation of Vector Mode Grating Coupler Interfaces for Integrated Optics

C. T. Nadovich [1],
[1] Lafayette College, Easton, PA, USA

The use of grating couplers to couple conventionally phased and polarized light near vertically in and out of optical slab or film waveguides [1] represents an attractive method to interface optical fiber to photonic ICs. Previously developed grating coupler designs use transversely ... Read More

Full-Wave Analysis of Nanoscale Optical Trapping

E. Furlani, and A. Baev
The Institute for Lasers, Photonics and Biophotonics, University at Buffalo, Buffalo, NY, USA

Plasmonic-based optical trapping is in its infancy and growing rapidly. Research in this area will significantly advance fundamental understanding in fields such as nanophotonics and biophotonics. Novel plasmonic trapping structures and systems can be designed and optimized using the ... Read More

Design of Solar Thermal Dryers for 24-hour Food Drying Processes

F. S. Alleyne [1], R. R. Milczarek [1],
[1] Healthy Processed Foods Research Unit, U.S. Department of Agriculture, Albany, CA, USA

Solar drying is a ubiquitous method that has been adopted for many years as a food preservation method. Most of the published articles in the literature provide insight on the performance of solar dryers in service but little information on the dryer construction material selection ... Read More

Characterization of a 3D Photonic Crystal Structure Using Port and S-Parameter Analysis

M. Dong[1], M. Tomes[1], M. Eichenfield[2], M. Jarrahi[1], T. Carmon[1]
[1]University of Michigan, Ann Arbor, MI, USA
[2]Sandia National Laboratories, Albuquerque, NM, USA

We present a 3D port sweep method in a lossy silicon photonic crystal resonator to demonstrate the capabilities of COMSOL Multiphysics® for frequency domain analysis with input and output ports. This method benefits from the advantages of the S-parameter analysis to characterize the ... Read More

A Study of Optical Sensor Based on Fiber Bragg Grating Using COMSOL Multiphysics®

C. Gavrila[1] and I. Lancranjan[2]


[1]Technical University of Civil Engineering Bucharest, Bucharest, Romania
[2]Advanced Study Centre, National Institute for Aerospace Research “Elie Carafoli”, Bucharest, Romania

Fiber optic sensors can measure a large range of physical, chemical and environmental variables such as temperature, pressure, shape, position, chemical concentration, moisture, etc. Fiber optic sensors provide measurements in applications where the conventional electrical based sensors ... Read More

Multiphysics Modeling of Electro-Optic Devices

J. Toney
Srico, Inc.
Columbus, OH

Designers of electro-optic modulators and related devices often use separate tools to study the optical and electrical portions of the device. The flexibility of COMSOL Multiphysics makes it possible to construct unified models of EO phenomena including realistic waveguide profiles and ... Read More