Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling Fluid-Induced Porous Scaffold Deformation

J. Podichetty Thribhuvan[1], S.V. Madihally[1]
[1]Oklahoma State University, Stillwater, OK, USA

Utilization of bioreactors to regenerate tissues outside the body has been intensely investigated in functional tissue engineering. Various studies have been performed using computational fluid dynamics (CFD) to understand fluid flow within bioreactors while assuming porous scaffold as a rigid structure. However, the physical and mechanical properties of most tissue engineering scaffolds suggest ...

Numerical Calculation of the Dynamic Behavior of Asynchronous Motors with COMSOL Multiphysics

J. Güdelhöfer[1], R. Gottkehaskamp[1], A. Hartmann[1]
[1]Department of Electrical Machines and Electromagnetic Field Theory, University of Applied Sciences Düsseldorf, Düsseldorf, Germany

This paper shows how a time-dependent and non-linear simulation of the dynamic operation behavior of an induction machine is executed by means of the \"Rotating Machinery\" interface from COMSOL Multiphysics 4.2a. The two-dimensional FEM model is connected to electrical circuits by coupling the physics \"Rotating Machinery\" and \"Electrical Circuit\" interfaces. These circuits include the ...

Contactless Power and Data Transfer for Multiple Nonlinear Loads

H.P. Schmidt [1], U. Vogl[1]
[1]UAS HAW Amberg-Weiden, Amberg, Germany

For the design of an inductive power and data transfer electromagnetic calculation are carried out. A transfer system is considered for loads that are distributed across some distances. For example, such loads are adjustable speed drives that are found in factory automation and intra-logistic. Physical properties of the inductive transfer are modeled via COMSOL. Lumped parameters are deduced ...

Design of a Controlled Dosing Scheme for Liquids using a Venturi

M. Dagaonkar[1], V. Kumaran[1], R. Venkataraghavan[1], D. C. Franklin[1]
[1]Unilever R&D, Bangalore, Karnataka, India

Dosing a predetermined quantity of one liquid into another, in a controlled fashion, is a process often encountered in a variety of operations at both industrial and laboratory scales. This process becomes a challenging one if it has to be carried out in a continuous mode, without using any dosing pump and if the dosage levels are very small. A possible simple and elegant solution to the problem ...

The Application of Low Temperature Plasma in COMSOL Multiphysics

Cheng-Che (Jerry) Hsu[1]
[1]Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan

Multiphysics simulation was used in this work to model inductively coupled plasmas (ICPs). Developing a model of an ICP is challenging due to the complex relationship between the applied electric field and mixture of chemical species that develops. A preliminary model was developed and validated for an Ar/O2 plasma including neutral, ionic, and all major reactions. The validated model was used ...

Toward an Evaluation of the Tonal Colouring of the Japanese koto using COMSOL Multiphysics and Acoustics Module

K. Coaldrake[1]
[1]The University of Adelaide, Adelaide City, South Australia, Australia

This paper investigates the potential for a multidisciplinary approach using COMSOL Multiphysics for the evaluation of the tonal colouring of the Japanese koto (13-stringed zither). It uses Ando’s classic acoustic studies (1986; 1996) as a benchmark for the analysis of the natural resonant frequencies and design of the sounding body of the koto. It reports on the development of the model and ...

Numerical Experiments on Deconvolution Applied to LES in the Modeling of Turbulent Flow

O. Toscanelli[1], V. Colla[1]
[1]Scuola Superiore S. Anna, Pisa, Italy

The Large Eddy Simulation is an important method to simulate turbulent flow. It does not produce a closed system of equations, to achieve this it is necessary to model the not-closed terms. The deconvolution can be used for this purpose. In this study some numerical experiments on this topic are performed with COMSOL Multiphysics®. The main objectives are to find an efficient way to implement ...

Study of the Thermal Behavior of Solar Cells Based on GaAs

N. Martaj[1,2], E. Guidicelli[2], Y. Cuminal[2], A. Perona[3], S. Pincemin[1,2]
[1]EPF-Ecole d’Ingénieurs, Montpellier, France
[2]IES, UMR5214, Université Montpellier II, Montpellier, France
[3]Laboratoire PROMES-CNRS Tecnosud, Rambla de la thermodynamique, Perpignan, France

The paper studies the thermal modeling and simulation of photovoltaic cells suitable for use in highly concentrated solar flux (> 1000 suns). The cells studied are those of GaAs kind. These cells are a very good alternative to be studied instead of more complex multi junctions cells. The objective is to find a simple and inexpensive way to remove heat from PV modules and to keep the electrical ...

Radiation Force Effect at the Dielectric Water-Air Interface - new

G. V. B. Lukasievicz[1], N. G. C. Astrath[2], L. C. Malacarne[2], M. L. Baesso[2], S. E. Bialkowski[3]
[1]Universidade Tecnológica Federal do Paraná, Toledo, PR, Brazil
[2]Universidade Estadual de Maringá, Maringá, PR, Brazil
[3]Utah State University, Logan, Utah, USA

The radiation force effects on the surface displacement can be calculated by solving the Navier-Stokes equation with appropriated boundary conditions. The surface deformation can be described by the radiation pressure as well as those forces due to gravity and surface tension. We used the photomechanical mirror (PM) method to measure the time-evolution of the nanometer deformation generated on ...

Estimativa do Fluxo de Calor em uma Ferramenta de Corte Durante um Processo de Usinagem com o Uso do Software COMSOL Multiphysics® e de Técnicas de Problemas Inversos - new

R. F. Brito[1], S. R. de Carvalho[2], S. M. M. de L. e Silva[1]
[1]Federal University of Itajubá - UNIFEI, Itabira, Minas Gerais, Brasil
[2]Federal University of Uberlândia - UFU, Uberlândia, Minas Gerais, Brasil

This work proposes the use of inverse problem techniques in connection with COMSOL to estimate the heat flux and the temperature field on a turning cutting tool in transient regime. The main purpose of the present work is to present the improvements performed in relation to the authors’ previous work to develop the complex geometry of a machining process. Specification function, which is an ...