Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Analysis of an Inductive Proximity Sensor

A. Frey [1], I. Kuehne [2], R. Großmann [1], T. Frommelt [1], L. Fromme [3], T. Koch [4],
[1] Augsburg University of Applied Sciences, Augsburg, Bavaria, Germany
[2] Heilbronn University, Heilbronn, Germany
[3] Bielefeld University of Applied Sciences, Bielefeld, Germany
[4] COMSOL Multiphysics GmbH, Göttingen, Germany

Today, 90 percent of automation sensors are binary proximity detectors. Besides capacitive and optical types, inductive proximity sensors are essential for industrial applications. Compared to their mechanical counterparts, they offer almost ideal properties as contact-free and wear-free working principle as well as high switching frequency and precision. Inductive sensors cover a detection ...

Frequency Response Analysis of a Printed Circuit Board

S. Mathmann[1]
[1]University of Applied Sciences Bielefeld, Department of Engineering Sciences and Mathematics, Bielefeld, Germany

During a practical course the students compare the measured frequency response of an assembled PCB (Printed Circuit Board) with the simulated data out of COMSOL Multiphysics® software. For this the whole PCB with all components are feed in the simulator and afterwards an eigenfrequency-analysis is carried out. To simplify the effort to do this, a COMSOL® app was created. As result the user ...

Uniform Reaction Rates and Optimal Porosity Design for Hydrogen Fuel Cells

J. H. Al-Smail [1]
[1] King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia

We develop a porosity-optimization problem to improve the electrochemical reactions taking place in hydrogen fuel cells. We introduce a mathematical model, which involves a system of conservation laws defined in a porous space domain. Our goal is to find the domain's optimal porosity function that can make the oxygen-hydrogen reaction as uniform as possible. The optimal porosity design ...

The Effect of Eccentricity in Fully Developed Annular Pipe Flow on Convection Heat Transfer and the Darcy Friction Factor

S. Rabbani [1], A. Elzawawy [1], J. D'Arrigo [1], J. D. Freels [2]
[1] Vaughn College of Aeronautics and Technology, New York, NY, USA
[2] Oak Ridge National Laboratory, Oak Ridge, TN, USA

Eccentricity in annular channels contributes to changes in fluid flow characteristics which in turn, affects the performance and integrity of the configuration. This research investigates a model of an annular channel with a diameter ratio of 0.762, an aspect ratio of 68.9:1 and heating of the internal surface of the inner cylinder with a 1.105MW/m2 heat flux. The Reynolds number ranges from 5 ...

Design and Simulation of Electroactive Polymer-Based Artificial Muscles for Biomedical Application

A. S. Tripathi [1], B. P. Chatterjee [2], S. Das [3],
[1] Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, India
[2] Dept. of Cardiology, Medical College and Hospital, Kolkata, India
[3] School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India

Electro-active polymer (EAP) based actuators are one of the suitable contenders for use in artificial muscles based bio-medical application because of their bio compatibility and lower active actuation voltage requirement phenomenon. At present Ionic polymer metal composites (IPMC), a type of EAP based actuator are being developed for various applications. IPMC actuator generally consist ...

A Comparison of the Continuous and Discrete Approach for Liquid Manipulation

S. F. Azam [1], G. Cathcart[1],
[1] RCAST, The University of Tokyo, Tokyo, Japan

The objective of this paper is to achieve a complete and rapid efficient mixing of numerous sample in micro-scale devices of microfluidic system. The principle of microfluidics is extensively used in a number of fields such as biomedical, healthcare, biochemical, drug research and other applications. These microfluidic devices with mathematical simulations are appropriately utilized in ...

Magneto-structural Analysis of Fusion grade Superconducting Toroidal Field Coils

A. Amardas [1], and S. Dwivedi[2]
[1] Institute for Plasma Research, Gandhinagar, Gujarat, India
[2] COMSOL Multiphysics Pvt. Ltd, Bangalore, Karnataka , India

In this paper, detail magnetostructural analysis of fusion grade superconducting toroidal field coils that are used in ‘tokamaks’ is presented. The stresses that arise due to Lorentz forces in large size superconducting coils that carry high currents are of catastrophic type in nature. These stresses are expected to influence the integrated performance of the magnet system. In this ...

Microwave Interstitial Tumor Ablation: New Modality for Treatment of Liver Cancer

S. Maini[1] , A. Marwaha[1] , and S. Marwaha[1]

[1] Department of Electrical & Instrumentation Engineering, SLIET , Longowal (Deemed University), Punjab

Hyperthermia is newly back in the interest of both, clinical and research oncologists, because of its properties to directly produce permanent damages of the treated tumors and to elicit important immunological responses against cancer cells by changing their immunogenicity.  Microwave ablation is used in the treatment of primary and secondary tumors of the liver.  Microwave antennas ...

Bio-Effluents Tracing in Ventilated Aircraft Cabins

G. Petrone[1], L. Cammarata[1], and G. Cammarata[1]
[1]Department of Industrial and Mechanical Engineering, University of Catania, Catania, Italy

Ventilation and Indoor Air Quality (IAQ) are issues of very high interest, determining comfortable conditions for occupants and no-contaminated local atmosphere. The aircraft cabins are more confined and have a higher occupant density than other indoor environments such as offices or residential houses. The passengers and the crew share a closed and ventilated cabin, which brings potential risk ...

Negative Ion Beams and Secondary Beams

M. Cavenago[1], P. Veltri[2], E. Gazza[2], G. Serianni[2], and P. Agostinetti[2]
[1]INFN-LNL, Legnaro, Padova, Italy
[2]Consorzio RFX, Padova, Italy

The development of powerful negative ion sources requires precise and versatile simulation tools to predict the emittance of the extracted ion beams and the heat load on the electrodes. A first tool is a determination of the plasma beam interface which is accomplished by a set of macro based in the COMSOL Multiphysics environment. Notwithstanding the strong nonlinearities involved, a proper ...