Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Pulsed Power Accelerator Design with COMSOL Multiphysics® Software - new

D. Reisman[1]
[1]Sandia National Laboratories, Albuquerque, NM, USA

We have developed Thor: a pulsed power accelerator for performing dynamic material experiments. The design was aided by using the COMSOL Multiphysics® software with the AC/DC Module and RF Module. Our design process involved optimizing the impedance of the system while maintaining a good margin against electrical breakdown. By using a three-dimensional electromagnetic model of the entire power ...

Finite Element Method Plasma Simulation of Nitrogen Contaminated Ceramic Metal Halide Lamps - new

P. Juhász[1], S. Beleznai[1], I. Maros[1]
[1]Budapest University of Technology and Economics, Budapest, Hungary

The ceramic metal halide lamps belong to the most efficient high intensity light sources of these days. Presently it is the nitrogen contamination that causes the most significant problems during ignition. If this material gets into the lamp's interior in high concentrations, it will make the lamp unable to ignite properly at lower voltages. A self-consistent fluid model was developed in ...

Magnetostatic-Magnon Sensors for Microwave Microscopy of Biological Structures - new

E. Hollander[1], E. O. Kamenetskii[1], R. Shavit[1]
[1]Microwave Magnetic Laboratory, Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva, Israel

Microwave sensing and monitoring is very attractive for biological applications because of their sensitivity to water and dielectric contrast. Direct detection of biological structures in microwave frequencies and understanding of the molecular mechanisms of microwave effects is considered as a problem of a great importance. Nowadays, however, microwave technique for localized testing biological ...

Modeling of Rotating Magnetic Field Eddy Current Probe for Inspection of Tubular Metallic Components

T. V. Shyam[1], B. S. V. G. Sharma[1], K. Madhusoodanan[1]
[1]Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

Rotating Magnetic Field Eddy current technique is a promising technique for inspection of flaws in metallic tubular components. Three primary coils, 120 degrees apart in space, are excited with three phase current source, by virtue, a rotating magnetic field polarised in radial direction is generated. This radial field interacts with metallic tube and generates ...

Diverse Models for Graphite Brick Deformation and Stress State in UK AGR Nuclear Reactors

J. Burrow [1], A. Bond [1],
[1] Quintessa Ltd, United Kingdom

The UK Advanced Gas-cooled Reactor fleet, operated by EDF Energy, utilize a graphite core consisting of a lattice of around 3000 annular bricks. Due to irradiation, oxidation and thermal effects, the bricks deform and loose mass as they age. Of key concern is the late-life behavior of the bricks, in particular the predicted time at which brick shrinkage reverses into expansion, generating large ...

Structural and Environmental Design of a Rainscreen System Using COMSOL Multiphysics

C. Guido Galante [1], M. Donà [2],
[1] Newtecnic Ltd, London, England, UK
[2] University of Cambridge, UK

The subject of the study is a bespoke rainscreen system designed for the Grand Theatre of Rabat, Morocco (Figure 1). The project presents a complex façade geometry and consists of a 1800-seat theater, an open-air amphitheater with a capacity of 7000 people, a rehearsal space and a restaurant. The rainscreen system consists of fiberglass individually cast reinforced concrete (GRC) panels ...

3-Dimensional Numerical Modeling of Radio Frequency Selective Heating of Insects In Soybeans

S. Wang [1], Z. Huang [1],
[1] Northwest A&F University, Yangling, Shaanxi, China

Radio frequency (RF) heating have potential as alternatives to chemical fumigation for disinfesting legumes. This study was conducted to investigate the feasibility of RF selective heating of insect larvae in 3 kg soybeans packed in a rectangular plastic container using a 6 kW, 27.12 MHz RF heating system. A finite element based computer simulation program-COMSOL Multiphysics® was used to solve ...

Numerical Simulations of Ion Cyclotron Range of Frequency (ICRF) Wave Fields in a Linear Plasma Device

M. Usoltceva [1], K. Crombé [4], E. Faudot [3], S. Heuraux [3], R. D’Inca [2], J. Jacquot [2], J-M. Noterdaeme [5], R. Ochoukov [2]
[1] Department of Applied Physics, Ghent University, Belgium; Max-Planck-Institut für Plasmaphysik, Garching, Germany; Université de Lorraine, Nancy, France
[2] Max-Planck-Institut für Plasmaphysik, Garching, Germany
[3] Université de Lorraine, Nancy, France
[4] Department of Applied Physics, Ghent University, Ghent, Belgium; LPP-ERM-KMS, TEC partner, Brussels, Belgium
[5] Department of Applied Physics, Ghent University, Belgium; Max-Planck-Institut für Plasmaphysik, Garching, Germany

Fusion devices (tokamaks, stellarators) require hundreds of millions degree Celsius temperature to reach the plasma state when the fusion reactions start to occur. Ion cyclotron resonance heating (ICRH) is a method of energy transfer to the ions in the plasma from electromagnetic radiation having a frequency equal to the ion cyclotron motion frequency in the presence of a magnetic field. Studies ...

Simulation of Reverse Saturable Absorption

N. Bambha [1],
[1] U.S. Army Research Laboratory, Hillandale, MD, USA

This poster describes a simulation of reverse saturable absorption in a solution C_60 molecules using the COMSOL Multiphysics® software. The optical processes in C_60 can be modeled through a five-level system. The energy states include three levels of the singlet state, coupled to two levels of an excited triplet state. The optical process is modeled with simple rate equations coupled to a ...

Numerical Study of Secondary Flows in a Sinusoidal Pipe

O. Ayala [1], I. Ahumada [2], L. Renaudin [2],
[1] Engineering Technology Department, Old Dominion University, Norfolk, VA, USA
[2] Brazil Scientific Mobility Program, CAPES, Brasilia DF, Brazil

The direction of the fluid is strongly related to the Reynolds number; as it increases, so does the centrifugal acceleration which tends to push the axial flow towards the outer side of the pipe. Secondary flow appear as 2 or 4 vortical structures after the inflection point. For low Reynolds number, the rotational direction of vortical structures remains unchanged. The core of the vortical ...