Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Comparative Study of the Basic Flow Field Designs for High Temperature Proton Exchange Membrane Fuel Cells - new

A. Lele[1], N. Lodha[1], R. Srivastava[1], A. Pandey[2], A. Paul[3]
[1]CSIR - National Chemical Laboratory, Pune, Maharashtra, India
[2]Reliance Industries Ltd., Reliance Technology Group, Navi Mumbai, Maharashtra, India
[3]CSIR - Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India

A Proton Exchange Membrane Fuel Cell (PEMFC) comprises a membrane-electrode assembly sandwiched between two conducting ‘monopolar’ plates having engraved gas flow channels, also called the flow field. The purpose of the flow field is to provide sufficient residence time for the gases to undergo reactions at the two electrodes, effect a homogeneous distribution of reactant gases over the given ...

Optimization and Simulation of MEMS Based Thermal Sensor for Performance of Transformer Oil

V. Vijayalakshmi[1], K. C. Devi[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

In this work, a bimetallic strip based thermal sensor was designed using MEMS module of COMSOL Multiphysics® software to monitor the temperature rise in insulating oil which was used as coolant in transformers. The bimetallic strip was designed with different shapes such as cylindrical, rectangle, square & conical and different compositions such as Al/Steel Alloy and Fe/Cu which can withstand ...

Numerical Investigation of Electroosmotic Flow in Convergent Divergent Micronozzle

V. Gnanaraj[1], V. Mohan[1], and B. Vellaikannan[1]
[1]Thiagarajar College of Engineering, Madurai, Tamilnadu, India

A fundamental understanding of the transport phenomena in microfluidic channels is critical for systematic design and precise control of such miniaturized devices towards the integration and automation of Lab-on- a-chip devices. Electroosmotic flow is widely used to transport and mix fluids in microfluidic systems. Electroosmotic transport in convergent divergent micronozzle is significant in ...

Finite Element Modeling a Redox-Enzyme-Based Electrochemical Biosensor

Y. Huang[1], and A. Mason[1]
[1]Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, USA

This paper describes the modeling of an electrochemical biosensor embedded in a microfluidic channel to determine the concentration of a target biomolecule. The total amount of analyte in the sample can be calculated by integrating the analyte concentration over the duration of the peak current. The biosensor is constructed by immobilizing redox-enzyme on an interdigitated array (IDA) electrode ...

An All-Purpose Full-Vectorial Finite Element Model for Arbitrarily Shaped Crossed-Gratings

G. Demésy[1], F. Zolla[1], A. Nicolet[1], and M. Commandré[1]
[1]Institut Fresnel, Université Aix-Marseille III, École Centrale de Marseille, France

We demonstrate the accuracy of the Finite Element Method (FEM) to characterize an arbitrarily shaped crossed-grating in a multilayered stack illuminated by an arbitrarily polarized plane wave under oblique incidence. To our knowledge, this is the first time that 3D diffraction efficiencies are calculated using the FEM. The method has been validated using classical cases found in the literature. ...

Thermal Simulation and Package Investigation of Wireless Gas Sensors

A. Paoli[1], L. Seminara[2], D.D. Caviglia[1], A. Garibbo[2], and M. Valle[1]

[1]Department of Biophysical and Electronic Engineering, University of Genova, Genova, Italy
[2]SELEX Communications S.p.A., Genova, Italy

Gas sensor arrays based on metal oxides operating at high temperature are commonly used in many application fields. They can operate on different principles and each sensor may show very different responses to the individual gases in the environment. Data coming from the array can be merged for reliable gas detection. One point which is common to the different sensors types is that the atmosphere ...

Optimization of a Thermal Actuator for Low Power/Low Cost Applications

R. Zúñiga-Quesada[1], M. Vílchez-Monge[1], P. Vega-Castillo[1]
[1]Instituto Tecnológico de Costa Rica, Cartago, Costa Rica

This work describes the study of a thermal actuator and modifications to the materials employed in order to decrease power consumption and implementation costs. For this study, we worked on improving the thermal actuator described in the work of T. Ebefors. The criteria for choosing the new materials were lower power consumption, commercial availability, and ease processing. The thermal actuator ...

Modeling of snRNP Motion in the Nucleoplasm

M. Blaziková[1], J. Malínský[2], D. Stanek[3], and P. Herman[1]
[1]Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
[2]Institute of Experimental Medicine, Prague, Czech Republic
[3]Institute of Molecular Genetics, Prague, Czech Republic

Small nuclear ribonucleoprotein particles (snRNPs) are essential supramolecular complexes involved in pre-mRNA splicing, the process of post-transcriptional RNA modifications. The particles undergo complex assembly steps inside the cell nucleus in a highly dynamic compartment called the Cajal body. We have previously shown that the free diffusion model does not fully describe the snRNP motion ...

Study of Thermo-Electrical and Mechanical Coupling During Densification of a Polycrystalline Material Using COMSOL

F. Mechighel[1,2,3], B. Pateyron[1], M. El Ganaoui[1], and M. Kadja[3]
[1]CNRS SPCTS UMR 6638, Universite de Limoges, France
[2]Département de Génie Mécanique, Universite de Annaba, Algerie
[3]Département de Génie Mécanique, Universite de Constantine, Algerie

Spark Plasma Sintering (SPS) is a promising rapid consolidation technique that allows a better understanding and manipulation of sintering kinetics and therefore makes it possible to obtain polycrystalline materials (ceramic or metallic) with tailored microstructures. A numerical simulation of the electrical, thermal and mechanical coupling during SPS is performed. Equations for conservation for ...

The initial simulation on characteristic of lithium ion cells using COMSOL soft

X. Liu, S. Wang, and L. Lu
Tianjin Institute of Power Source, Beijing, China

Tianjin Institute of Power Source (TIPS) is the first, the largest and most complete electrical energy technology research institute of China. We use COMSOL Multiphysics to simulate the lithium-ion batteries. It contains: Simulation on charge-discharge behavior of lithium ion cells; Simulation on thermal and safety of lithium ion cells; Design for lithium ion cells – collector, stress; From ...

2701 - 2710 of 2858 First | < Previous | Next > | Last