Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Porous Media Based Model for Deep-Fat Vacuum Frying Potato Chips

A. Warning, A. K. Datta, A. Dhall, and D. Mitrea
Department of Biological and Environmental Engineering
Cornell University
Ithaca, NY

A multiphase porous media model involving heat and mass transfer within a potato chip was implemented in COMSOL 3.5a. The diffusive flux in oil and liquid water was modeled from capillary driven flow while the gas phase was modeled using binary diffusion. A non-equilibrium water evaporation rate was used and Darcy's law for the momentum equation to solve for the convection of each species. ...

Heat Loss Evaluation of an Experimental Set-up for Predicting the Initial Stage of the Boiling Curve for Water at low Pressure

K. T. Witte[1], F. Dammel[2], L. Schnabel[1], and P. Stephan[2]
[1]Fraunhofer Institut Solare Energiesysteme - Department of Thermal Systems and Buildings, Freiburg, Germany
[2]Technische Universität Darmstadt - Institute of Technical Thermodynamics, Darmstadt, Germany

In this paper heat losses and gains are assessed for a specific measuring set-up improving the validity of performance data to accurately predict the initial stage of a boiling curve. Simulation focus on achieving results predicting real measuring data of a plain surface structure. Therefore, the relevant components of the measuring set-up have been implemented in a 2-D axisymmetric model ...

Development of Mathematical Model for Determining Sound Reduction Index of Building Elements

J. Ratnieks, A. Jakovics, and J. Klavins
University of Latvia
Riga, Latvia

Although we know the physics inside a media where the sound waves propagate, determination of material\'s or structure\'s sound reduction index is not an easy task. The lack of good engineering solutions proves the point. The only reliable way to calculate the sound reduction index is to carry out an experiment.Therefore, the aim of this study is to develop a mathematical model that can ...

Optimization of a High-Temperature High-Pressure Direct Wafer Bonding Process for III-V Semiconductors

R. Martin, J. Kozak, K. Anglin, and W. Goodhue
University of Massachusetts Lowell
Lowell, MA

Many optoelectronic devices utilize a heterojunction of a pair semiconducting materials including high-efficiency MEMS devices, solar cells, LEDs, and VCSELs. One fabrication technique which achieves such a device is direct wafer fusion. To optimize the process, COMSOL Multiphysics 4.0 was used to test various geometric configurations of the fixture. 2D and 3D models were created in order ...

An Analysis of Spin-Diffusion Dominated Ferrofluid Spin-Up Flows in Uniform Rotating Magnetic Fields

S. Khushrushahi[1], A. Guerrero[2], C. Rinaldi[3], and M. Zahn[1]
[1]Massachusetts Institute of Technology, Cambridge, MA
[2]Univeridad Industrial de Santander, Bucaramanga, Colombia
[3]University of Puerto Rico, Mayaguez, Mayaguez, PR

This work analyzes the spin-diffusion dominated explanation for spin-up bulk flows in ferrofluid filled cylinders, with no free surface, subjected to a uniform rotating magnetic field. COMSOL results are compared to experimental results and analytical results. Simulating ferrofluid spin-up flows have many subtleties, especially when using a single domain region to model the ferrofluid ...

Computational Acoustic Attenuation Performance of Helicoidal Resonators

W. Lapka
Poznan University of Technology
Poznan, Poland

This paper concerns the problem of obtaining proper acoustic attenuation performance through computations. COMSOL was used to solve acoustics systems with helicoidal resonators in the frequency domain. Based on the studies of insertion and transmission loss of helicoidal resonators, a high consistency between the results obtained by numerical calculations with experimental measurements was ...

Electro-Stimulating Implants for Bone Regeneration: Parameter Analysis on Design and Implant Position

Y. Su[1], R. Souffrant[1], D. Klüß[1], R. Bader[1], M. Ellenrieder[1], and H. Ewald[2]
[1]Department of Orthopaedics, University of Rostock, Rostock, Germany
[2]Department of General Electrical Engineering, University of Rostock, Rostock, Germany

A common clinical treatment is the application of alternating electromagnetic fields using a screw implant to the weak bone tissue within the femoral head, which speed up the bone regeneration in case of avascular necrosis of the femoral head . In our present work the bipolar induction screw system as the depicted ASNIS S-Series screw with integrated coil and electrodes were investigated. ...

A Method for Efficient Calculation of Diffusion and Reactions of Lipophilic Compounds in Complex Cell Geometry

Kristian Dreij[1], Qasim Ali Chaudhry[2], Bengt Jernström[1], Ralf Morgenstern[1], and Michael Hanke[2]
[1]Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
[2]School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden

A general description of effects of toxic compounds in mammalian cells is facing several problems. Firstly, most toxic compounds are hydrophobic and partition phenomena strongly influence their behaviour. Secondly, cells display considerable heterogeneity regarding the presence, activity and distribution of enzymes participating in the metabolism of foreign compounds i.e. bioactivation ...

Multiphysics Process Simulation of Static Magnetic Fields in High Power Laser Beam Welding of Aluminum

M. Bachmann[1], V. Avilov[1], A. Gumenyuk[1], M. Rethmeier[1]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany

The article deals with the application of the Hartmann effect in high power laser beam welding of aluminum. The movement of liquid metal in a magnetic field causes electric currents which build a Lorentz force that decelerates the original flow. The numerical model calculates the influence of a steady magnetic field on partial penetration keyhole laser beam welding of aluminum. Three-dimensional ...

Zero Dispersion Modeling in As2S3-Based Microstructured Fibers

P. Gagnon[1], H. Manouzi[1], M. El Amraoui[1], Y. Messaddeq[1]
[1]Laval University, Quebec City, QC, Canada

An important step in designing a microstructured optical fiber is the computation and management of its dispersion curve. It is well-known that computing chromatic dispersion can be done analytically for certain geometries (e.g. step-index fibers), but no such analytical methods is known in the realm of microstructured optical fibers. Figure 1, Figure 2, and Figure 3 illustrate cross-sections of ...