Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Study of Supercritical Coal Fired Power Plant Dynamic Responses for Grid Code Compliance - new

A. Gil-Garcia[1], I. Kings[1], B. Al-Duri[1]
[1]University of Birmingham, School of Chemical Engineering, Edgbaston, Birmingham, UK

In clean coal technologies, improving energy conversion efficiency is one of the most important directions. Compared to traditional subcritical power plants, pressure-increased supercritical power plants improve the plant energy efficiency from 35% up to 45%. This work presents a study of the thermodynamic behaviour of the water cycle in coal-fired boilers in response to the changes in energy ...

Dynamic Simulation of Interface Shapes During Chemical Vapor Deposition

J. V. Jayaramakrishna[1], S. K. Thamida[1]
[1]National Institute of Technology Warangal, Warangal, Telangana, India

Chemical Vapor Deposition (CVD) finds application in many manufacturing processes of microelectronic devices and MEMS as a recent development. It is also useful for preparation of functionalized surfaces in microsensor kind of devices. The phenomena that is studied is deposition of a crystalline material for example Silicon from the gas phase substance such as Silicon Hydride (SiH4). The ...

The Effect of Space Charge due to the Auto-Ionization of Neutral, Hydrogenic States in Point-Contact Germanium Detectors at MilliKelvin Temperatures - new

D. Faiez[1], N. Mirabolfathi[1], B. Sadoulet[1], K. M. Sundqvist[2]
[1]Department of Physics, University of California - Berkeley, Berkeley, CA, USA
[2]Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX, USA

A class of semiconducting detectors, operated at temperature T~50mK, has direct application to the search for dark matter particle, when are able to simultaneously measure both the ionization and phonons created by particle interactions. We explore the effect of space charge accumulation in a germanium p-type point contact detector which arises due to the auto-ionization of hydrogenic ...

Modeling Mechanical Property Changes During Heating of Carrot Tissue - A Microscale Approach - new

S. Kadam[1], A. K. Datta[1]
[1]Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY, USA

Turgor pressure loss and pectin degradation result in texture loss during cooking of plant based materials. To simulate texture loss, a simultaneous heat and moisture transfer, pectin degradation in the cell wall material and solid mechanical model was developed at the microscale using finite elements to predict the homogenized Young’s Modulus of the carrot tissue during heating. The model ...

Effect of Permeability Diminution in Nutrient Diffusion in Intervertebral Disc

M. A. Chetoui [1], O. Boiron [2], A. Dogui [3], V. Deplano [2],
[1] Université de Monastir, Ecole Nationale D'ingénieurs de Monastir; Ecole centrale Marseille, Marseille, France
[2] Aix-Marseille Université, CNRS, Ecole Centrale, Marseille, France
[3] Université de Monastir, Ecole Nationale D'ingénieurs de Monastir, Marseille, France

Intervertebral discs (IVD) are fibro-cartilages situated between vertebrae providing their joint flexibility. They play a major role in the transmission and absorption of load through the spine. The disc can undergo progressive structural and quantitative changes in its composition and morphology related to mechanical load applied to the spine which can lead to disc degeneration; this disease is ...

Doping Dependent I-V Characteristics of Single Silicon Nanowire

S. Mishra [1], S. K. Saxena [1], P. Yogi [1], P. R Sagdeo [1], R. Kumar [1],
[1] Indian Institute of Technology Indore, Indore, Madhya Pradesh, India

In the present work, we have studied the electron transport properties of single silicon nanowire using Semiconductor Module of COMSOLMultiphysics software. We construct a MSM (metal-semiconductor-metal) model where metal is selected as copper and semiconductor is taken as silicon. Silicon is doped with n-type impurity by increasing doping concentration. Further, the Schottky diodes formed at ...

Numerical Simulation of Acoustic Properties of Porous Metals under High Sound Pressure Level Conditions

B. Zhang [1], X. Wang [1], L. Ni [1]
[1] School of Mechanical Engineering, Ningxia University, China

The sound propagation and absorption properties in porous media under high sound pressure level conditions have been reported elsewhere. Also several analytical and semi-analytical solutions have been developed; however, these solutions are relatively complicated and the provided results are not accurate enough yet. In this work, the simulated results for the study of the sound absorption ...

Simulation of Reverse Saturable Absorption

N. Bambha [1],
[1] U.S. Army Research Laboratory, Hillandale, MD, USA

This poster describes a simulation of reverse saturable absorption in a solution C_60 molecules using the COMSOL Multiphysics® software. The optical processes in C_60 can be modeled through a five-level system. The energy states include three levels of the singlet state, coupled to two levels of an excited triplet state. The optical process is modeled with simple rate equations coupled to a ...

A Flow and Transport Model of Catalytic Multi-Pump Systems with Parametric Dependencies

A. Sen [1], D. Myers [1], A. Altemose [1],
[1] Department of Chemistry, Pennsylvania State University, University Park, PA, USA

This poster studies catalytic micropumps and their ability to induce fluid flow on the microscale. The goal of the study is to design a long-distance, directed convective loop. An array of catalytic micropumps was constructed in the domain, comprised of two distinct catalysts in an alternating pattern with a uniform concentration of their respective reagents in the surrounding geometry. Two ...

A Simulation App for Determining How Best to Cool a Beer Bottle

J. Richter[1], T. Hilbig[1], C. Schröder[1]
[1]University of Applied Sciences Bielefeld, Department of Engineering Sciences and Mathematics, Bielefeld, Germany

The scope of this project was the creation of a short and comprehensive tutorial for the use of COMSOL® Application Builder for students at the University of Applied Sciences Bielefeld. The tutorial is based on the everyday life “problem” how to cool a beer bottle most efficiently. It shows how to use the most important features and tools (e.g. creating buttons, input fields, methods, generating ...