Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiscale Damage Detection in Conductive Composites

R. C. Thiagarajan
ATOA Scientific Technologies Private Limited, Bangalore, India

Conductive Composites such as carbon fiber reinforced composites are increasingly used in safety critical aerospace applications. The catastrophic macro structural failure of composite structures initiates from a micro level failure event such as fiber breaks. The ability to detect damage early on can improve the safety level and reliability of composite structures. A multilevel self-sensing ...

Micro Mechanical Exploration of Composites for Superior Properties

R. C. Thiagarajan, and K. V. Chiranjeevi
ATOA Scientific Technologies Private Limited
Bangalore, India

The predictive engineering of materials is matured from predicting properties from known morphology or constituents to engineering novel morphology for superior properties. The focus of this paper is about implementation of computational material mechanics modeling method in COMSOL Multiphysics software for engineering the constituents for superior properties. A brief review of property ...

Light Scattering Simulation of Nano-objects on the Surface of Silicon Wafers by 3D Finite Element Method

Y. Oshikane, T. Higashi, N. Taniguchi, M. Nakano, and H. Inoue
Dept. of Prec. Sci. and Technology
Grad. School of Eng.
Osaka University
Japan

Nanotechnology is rated as a key technology of the 21st century. In the field of nano-optics already at present, state-of-the-art scientific experiments and industrial applications exhibit nanometer to sub-nanometer design tolerances. This motivates the development and application of fast and accurate simulation tools for these fields or electromagnetic (EM) field.

Parametric Study of Heavy Oil Recovery by Electromagnetic Heating on a Horizontal Well

M. Liu[1], G. Zhao[1]
[1]University of Regina, Regina, SK, Canada

This study presents a oil-gas two-phase linear flow EMH model using COMSOL Multiphysics simulator. Special attention is focused on reservoirs with characteristics for which steam injection is not attractive or feasible such as low permeability, thin-zone, and extra-heavy oil reservoirs. Comparisons showed that cumulative oil production obtained by EM heating is better than what is achieved by a ...

Optimizing Performance of Equipment for Thermostimulation of Muscle Tissue using COMSOL Multiphysics

J. Kocbach[1], K. Folgerø[1], L. Mohn[2], O. Brix[3]
[1]Christian Michelsen Research, Bergen, Norway
[2]Luzmon Norway, Bergen, Norway
[3]Michelsen Medical, Bergen, Norway

The design challenge for thermostimulation equipment is to get a combination of high electric field strength and high temperature within the muscle tissue without causing pain or skin burns. In the present work, COMSOL Multiphysics is used to simulate the temperature distribution and electric field distribution within body tissue for varying body composition and varying design parameters of the ...

Design of MEMS based Polymer Microphone for Hearing Aid Application

V. S. Nagaraja[1], Ramanuja H. S.[1], Deepak K[1], S. L. Pinjare[1]
[1]Electronics and Communication Engineering, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, India

In this work, a MEMS based condenser microphone [1,2] using Polyimide as the diaphragm has been designed. The microphone structure has a backplate placed on top of the diaphragm. The backplate and the diaphragm are made up of polyimide. The two polyimide plates are separated by air gap which is achieved by using Aluminium as a sacrificial layer in between, which is etched away to create the air ...

Reliability Enhancement of Bio MEMS based Cantilever Array Sensors for Antigen Detection System using Heterogeneous Modular Redundancy

L. S. Sundharam[1]
[1]Kumaraguru college of Technology, Coimbatore, Tamil nadu, India

The objective of the work is to propose a reliability enhancement model for antigen detection system (ADS) using bio MEMS based cantilever array sensors using heterogeneous modular redundancy technique. The reliability of the ADS is expressed in terms of the constituent sub systems which are heterogeneous not only in their respective structures and behaviors but also in their forms. The possible ...

Modeling Fluid-Induced Porous Scaffold Deformation

J. Podichetty Thribhuvan[1], S.V. Madihally[1]
[1]Oklahoma State University, Stillwater, OK, USA

Utilization of bioreactors to regenerate tissues outside the body has been intensely investigated in functional tissue engineering. Various studies have been performed using computational fluid dynamics (CFD) to understand fluid flow within bioreactors while assuming porous scaffold as a rigid structure. However, the physical and mechanical properties of most tissue engineering scaffolds suggest ...

Design and Prototyping of a Passive Cold Chain Vaccine Storage Device for Long Hold Times

D. Gasperino [1], O. Yildirim[1]
[1]Intellectual Ventures, Bellevue, WA, USA

In 2010 an estimated 109 million infants were immunized against DTP, which serves as a good proxy for vaccinations in general. At the same time, however, approximately 19.3 million infants worldwide were not reached by routine DTP immunization services. Immunization rates tend to be lowest in areas where poor infrastructure and limited access to electricity can cause vaccine stock-outs and ...

Weak Formulations for Calculating Spin Wave Dispersion Relation in Magnonic Crystals

M. Mruczkiewicz[1]
[1]Adam Mickiewicz University, Poznan, Poland

We study the spin wave excitation (coherent precession of magnetic moments) in periodically arranged magnetic stripes, i.e., in one-dimensional magnonic crystal (MC). Two approaches have been implemented. We have defined a structure that dispersion relation can be obtained using both approaches and compared them. In general, the approach I has to be used for MCs where the exchange interactions ...