Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Computational Analysis of the Mechanical and Thermal Stresses in a Thin Film PProDOT-Based Redox Capacitor

J. Sotero-Esteva[1], M. Rosario-Canales[2], P. Gopu[3], and J. Santiago-Avilés[3]

[1]Department of Mathematics, University of Puerto Rico at Humacao, Humacao, PR
[2]Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
[3]Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA

Among the several types of capacitors, the double-layer and redox types have gathered increasing attention to address some of the heavy power demands of modern technology. In redox capacitors, charge is stored chemically via oxidation/reduction processes in the active materials like electroactive polymers (EAPs) or metal oxides. This work investigates the stresses and heat flux of the electrode ...

Combined Analytical and Numerical Modeling of a Resonant MEMS Sensor for Viscosity and Mass Density Measurements

S. Cerimovic[1], R. Beigelbeck[2], H. Antlinger[3], J. Schalko[2], B. Jakoby[3], and F. Keplinger[1]
[1]Institute of Sensor and Actuator Systems, Vienna University of Technology, Vienna, Austria
[2]Institute for Integrated Sensor Systems, Austrian Academy of Sciences, Wiener Neustadt, Austria
[3]Institute for Microelectronics and Microsensors, Johannes Kepler University Linz, Linz, Austria

A resonant MEMS sensor for viscosity and mass density measurements of liquids was modeled. The device is based on Lorentz-force excitation and features an integrated piezoresistive readout. The core sensing element is a rectangular vibrating plate suspended by four beam springs. The liquid surrounding the plate influences the resonant behavior of the system. Thus, evaluating the properties of ...

Using COMSOL to Support a Cost-Effective, Non-Destructive Evaluation Approach for Predicting Bolt Failure in Highway Bridges

A. Elyea, B. Doubek, G. Hubbard, and D. Ozevin
Department of Civil Engineering
University of Illinois at Chicago
Chicago, IL

The development of a quantitative nondestructive evaluation method, as an alternative to visual inspection, for inspecting pre-tensioned bolts in fracture critical bridges is presented. In order to understand the ultrasonic behavior of a wide variety of bolt geometries used in bridges, numerical models of nine different bolt geometries were developed. The numerical models included the ...

Simulation of Thermal Sensor for Thermal Control of a Satellite using COMSOL

G. Mangalgiri
BITS Pilani
K K BIRLA GOA CAMPUS
Zuarinagar, Goa
India

Spacecrafts have a prime necessity that their temperature be controlled. This paper presents the simulation of a mechanically actuated field effect transistor that is used in a thermal system. It comprises of a composite beam, a piezoelectric substrate and a field effect transistor. The temperature rise causes a deflection in the composite beam thereby causing it to impinge on the piezoelectric ...

Modeling an electric cell actuator and loudspeaker using COMSOL Multiphysics

W. J. Wu
NTU Nano-Bio MEMS Group
National Taiwan University,
Taiwan

This presentation presented the following: * The building of an FEA model of an electric cell actuator using COMSOL Multiphysics * Validation of this model through the AVID and ESPI measurement systems * The building of an FEA model of an electric loudspeaker using COMSOL Multiphysics * Validation of this model throughan acoustic measurement systems This paper is in Chinese.

Optical Manipulation of Microscopic Objects

R. Ozawa
Yokohama University
Japan

In recent years, optical manipulation using optical radiation pressure has been widely studied. In this study, the radiation pressure exerted on various kinds of microscopic objects with different laser beams was evaluated by COMSOL Multiphysics software. By changing beam shapes, microscopic objects can be trapped and rotated. This paper is in Japanese.

Electrical Response and Thermal Damage Assessment of Cutaneous and Subcutaneous Tissues to Noninvasive Radiofrequency Heating: A Computational Modeling Study

A. González-Suárez[1,2], J. N. Jimenez-Lozano[3], W. Franco[1]
[1]Wellman Center for Photomedicine, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
[2]Biomedical Synergy, Electronic Engineering Department, Universitat Politècnica de València, Valencia, Spain
[3]ZELTIQ Aesthetics, Inc., Pleasanton, CA, USA

Electromagnetic radiofrequency (RF) sources are widely used to heat up cutaneous and subcutaneous tissues. The subcutaneous morphology of tissue consists of a fine, collagenous and fibrous septa network enveloping clusters of adipocyte cells; however, it is commonly regarded as a homogeneous fat layer in computational models. In the present study the objective is to assess the effect of the ...

3D Hydrogeological Modeling - From a Theoretical 2D Model through a Medium Scale Application up to a Challenge: Simulations at Basin Scale

E. Cavalli[1], R. Simonetti[1], M. Gorla[1], N. Ceresa[1]
[1]CAP Holding, Milan, Italy

An alluvial aquifer system has probably conceived as a numerical modeling hell. We have chosen COMSOL Multiphysics® for two reasons: 1) FEM methods allow to use complex geometries; 2) multiphysics simulation permits to run a single model with all phenomena. We built a section with these physics: a) Darcy's law, b) Richards' equation, c) ALE to show surface deformation, d) Hydrogeologcal ...

Numerical Experiments on Deconvolution Applied to LES in the Modeling of Turbulent Flow

O. Toscanelli[1], V. Colla[1]
[1]Scuola Superiore S. Anna, Pisa, Italy

The Large Eddy Simulation is an important method to simulate turbulent flow. It does not produce a closed system of equations, to achieve this it is necessary to model the not-closed terms. The deconvolution can be used for this purpose. In this study some numerical experiments on this topic are performed with COMSOL Multiphysics®. The main objectives are to find an efficient way to implement ...

Several Benchmarks for Heat Transfer Problems in COMSOL Multiphysics®

S. Titarenko[1]
[1]University of Leeds, Leeds, United Kingdom

Nowadays all branches in modern science and industry tend to solve ever complicating problems. As the result the computational time increases considerably and it become very important to reduce the processing time and use available resources more efficiently. Parallelizing problem proves itself as efficient way to overcome the described problem. In the poster we compare different methods of ...

3161 - 3170 of 3379 First | < Previous | Next > | Last