Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Estudo da Formação de Poros na Membrana Durante a Eletroporação de Células Biológicas - new

L. S. Pereira [1], G. B. Pintarelli [1], D. O. H. Suzuki [1],
[1] Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil

Este trabalho tem como objetivo o estudo do fenômeno da eletroporação, mais especificamente, a formação de poros nas membranas plasmática e nuclear, a fim de identificar previamente a influência de cada parâmetro ao longo do processo, buscando configurações que proporcionem melhores resultados. As simulações e estudos foram realizados com o software COMSOL Multiphysics ®. O Módulo AC/DC e a ...

Aplicação de Elementos Finitos na Ortodontia - new

T. O. Bassani [1], T. Bassani [2], A. Andriguetto [1], F. Schneider [2],
[1] Instituto Latino Americano de Pesquisa e Ensino Odontológico - ILAPEO, Curitiba, PR, Brasil
[2] Universidade Tecnológica Federal do Paraná – UTFPR, Curitiba, PR, Brasil

O presente estudo visou a avaliação, por meio do método dos elementos finitos, das tensões geradas em um arco ortodôntico chamado de Arco de Retração Dupla Chave, também conhecido como DKL. Para isso foram modeladas as geometrias do arco DKL, dos bráquets e das coroas dentais, no software COMSOL Multiphysics®. O modelo criado tem como objetivo a substituição dos métodos tradicionais de ...

Fluid Flow Modeling in a Bioreactor Applied to Wine Production - new

C. Soares [1], N. Padoin [1], P. M. Aballay [2], O. A. Ortiz [2],
[1] Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
[2] Universidad Nacional de San Juan, San Juan, Argentina

Wine quality is strongly dependent on the operation parameters of the production process. In batch or fed batch reactors, the rotating velocity should be carefully controlled to avoid cellular stress and ensure adequate mixing of the mixture. Moreover, precise control of substrates concentration evolution and cellular growth, as well as efficient heat transfer, allows the production of high ...

Scraping Non-Newtonian Power-Law Paint - new

C. R. Meyer [1], J. R. Rice [1],
[1] Harvard University, Cambridge, MA, USA

A similarity solution to Taylor's paint scraper problem for the flow of a non-Newtonian power-law fluid is presented. A shooting method numerical solution agrees with the results found for Newtonian fluids and is able to capture both shear-thinning and shear-thickening fluids. Simulations created in COMSOL Multiphysics® software are also presented to corroborate the shooting method and display ...

Computational Design and Optimization of Bone Tissue Engineering Scaffold Topology - new

N. P. Uth [1], J. Mueller [2], B. Smucker [3], A. Yousefi [1],
[1] Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, OH, USA
[2] Research Computing Support, Miami University, Oxford, OH, USA
[3] Department of Statistics, Miami University, Oxford, OH, USA

Introduction: Bone tissue has a limited ability for regeneration; critically sized defects cannot self-heal and require medical intervention. Bone tissue engineering (TE) circumvents this issue by growing replacement bone tissue from the patient’s own cells inside scaffolds. TE scaffolds are porous constructs that act as a support structure during bone regeneration and helps cells attach and ...

Multiphysics Model for Breakup of Charged Liquid Droplets in Electric Fields - new

S. Chaudhuri [1], W. Du [1],
[1] University of Illinois at Urbana-Champaign, Champaign, IL, USA

Predicting and controlling the formation of droplets from a liquid jet is a critical problem in a variety of applications ranging from fuel injection to paint sprays. It is known that liquid droplets subjected to an electric field acquire a net electrostatic charge via induction, and that the magnitude of this charge depends on the conductivity of the liquid and the size of the droplet [1]. When ...

Multiphysics Simulation of a Printed Circuit Heat Exchanger - new

A. Daouk [1], O. E. Petel [1], H. Saari [1],
[1] Carleton University, Ottawa, ON, Canada

Printed Circuit Heat Exchangers (PCHEs) are a type of compact heat exchangers that are made by diffusion bonding steel plates, where each plate is chemically etched to form semicircular passages that allow for fluid flow. They are ideally suited for high pressure and high temperature applications. The aim of the present work is to use COMSOL Multiphysics® software to model heat exchange within a ...

CFD Analysis of a Printed Circuit Heat Exchanger - new

K. Wegman [1], X. Sun [1],
[1] Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, OH, USA

In this experiment, the performance of a Printed Circuit Heat Exchanger (PCHE) was studied using COMSOL Multiphysics® software. PCHEs are diffusion bonded heat exchangers containing semicircular, chemically etched flow paths. Helium was used as the working fluid on both the hot and cold sides. A simplified model was used in the simulation, and the results were compared to experimental results. ...

Modeling of Porous Catalyst Pellets: Comparison of Diffusion Flux Models for Steam Methane Reforming - new

P. L. Mills [1], L. Olabanji [1], A. Nagaraj [1], A. Nanduri [1],
[1] Department of Chemical and Natural Gas Engineering, Texas A&M University - Kingsville, Kingsville, TX, USA

Introduction Steam reforming of natural gas has been the most common method for producing synthesis gas (CO + H2) for the production of H2, MeOH and NH3 for over half a century [1]. Production of H2 in the USA using steam methane reforming (SMR) is ca. 9 MM tons/yr. Global production of NH3 using H2 derived from SMR was ca. 109 MM/yr in 2004. In the chemical industry, the SMR process is ...

Solution of Poroelastic Equations with Different Base Variables Using Equation-based Modeling - new

M. H. Akanda [1], Y. Cao [1], A. J. Meir [1],
[1] Department of Mathematics & Statistics, Auburn University, Auburn, AL, USA

Poroelasticity equations describe the interaction between fluid flow and solids deformation within a porous medium. Modeling of poroelasticity is coupling between elastic deformation of porous materials and Darcy’s law. Poroelasticity has numerous real world applications such as in reservoir engineering, bio-engineering, environmental engineering etc. We have used quasi-static poroelastic ...

3161 - 3170 of 3222 First | < Previous | Next > | Last