See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection

Radionuclide Transport Through Different Routes Near a Deposition Hole for Spent Nuclear Fuel

V-M.S. Pulkkanen[1]

[1]VTT, Technical Research Centre of Finland, Espoo, Finland

Radionuclide transport modeling is a part of the research concerning geological disposal of spent nuclear fuel. Typically, the transport models near a single deposition hole focus on the reactions of nuclides, while the model geometry and the flow of groundwater are often simplified. In ... Read More

Punch Design for Uniaxial Forging Process of γ-TiAl Using COMSOL Multiphysics®

R. Cagliero[1] and G. Maizza[1]
[1]Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Torino, Italy

The increasing demand for improved metallurgical products strongly motivates the optimization of manufacturing processes and design of γ-TiAl products. Among the large variety of available forming processes, cold closed-die forging is particularly suitable for producing net shape ... Read More

Microwave Interstitial Tumor Ablation: New Modality for Treatment of Liver Cancer

S. Maini[1] , A. Marwaha[1] , and S. Marwaha[1]

[1] Department of Electrical & Instrumentation Engineering, SLIET , Longowal (Deemed University), Punjab

Hyperthermia is newly back in the interest of both, clinical and research oncologists, because of its properties to directly produce permanent damages of the treated tumors and to elicit important immunological responses against cancer cells by changing their immunogenicity.  ... Read More

Wind Evaporation On Wetted Surfaces Under Uncertainty Conditions

J.M. Gozalvez-Zafrilla, M.C. Leon-Hidalgo, J. Lora-Garcia, A. Santafe-Moros, and J.C. Garcia-Diaz
Universidad Politecnica de Valencia, Valencia, Spain

Brine disposal from desalination plants placed in inland areas far from sea is an important problem. Evaporation ponds can be used for reducing the waste to solid state but they require huge amounts of land. Evaporation using arrays of wet surfaces can minimize the land requirements. One ... Read More

Thermal Modelling For The Implementation Of An Energetic Efficiency Control System In A Room Of Meetings Of Singular Geometry

M. Martínez, V. Fuster, J. Fernández, and I. Benítez
Instituto Tecnológico de la Energía (ITE), Paterna, Valencia, Spain

The aim of this Project is to obtain a temporary and spatial evolution model of the temperature into a meeting room with the aim to develop an efficient energy mechanism which can improve the air conditioner control system. The project has considered two extremes cases: on the one hand a ... Read More

Solving Two-scale Transport Laws During Frying of Foods Using COMSOL Multiphysics

J. Maneerote, and P.S. Takhar
International Center for Food Industry Excellence Texas Tech University, Lubbock, TX, USA

Microscale comprised of the scale of food biopolymers at which biochemical reactions and textural changes take place, and the macroscale was the scale of interaction of polymers with surrounding water, vapor and oil phases. Numerous novel equations such as generalized Darcy’s law based ... Read More

Simulation of MEA in PEMFC and Interface of Nanometer-Sized Electrodes

Q. Zhang, Y. Liu, and S. Chen
Wuhan University, College of Chemistry and Molecular Science, Wuhan, China

COMSOL Multiphysics is a very helpful simulation software in our researches on both PEMFC and nanometer-sized electrodes. In the first part of our presentation, the influence of humidity and temperature to the performance of PEMFC are studied by simulating the MEA (membrane electrode ... Read More

Finite Element Approach for the Analysis of the Fuel Cell Internal Stress Distribution

E. Firat, P. Beckhaus, and A. Heinzel
Zentrum für BrennstoffzellenTechnik (ZBT)
Duisburg, Germany

A fuel cell stack is a setup of a number of single fuel cells which have to be mechanically compressed each other to ensure good electrical conductivities and tightness against leakage of supplying gases (e.g. hydrogen) and cooling media. In this study a 3D FEM model is developed with ... Read More

Finite Element Analysis of Equine Tooth Movement Under Masticatory Loading

M. Gardemin[1], M. Lüpke[1], V. Cordes[2], and C. Staszyk[2]
[1]Institute for General Radiology and Medical Physics, University of Veterinary Medicine Hannover, Hannover, Germany
[2]Institute of Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany

Like humans, horses can develop a variety of dental problems. Different equine diseases occur in different areas of the equine cheek tooth or its surrounding tissues. With a realistic simulation of a chewing cycle it can be possible to link mechanical phenomena such as high stress in ... Read More

An Elastic and Hyperelastic Material Model of Joint Cartilage - Calculation of the Pressure Dependent Material Stress in Joint Cartilage

T. Reuter, and M. Hoffmann
fzmb GmbH
Research Centre of Medical Technology and Biotechnology
Bad Langensalza, Germany

In this paper we introduce a elastic and hyperelastic model to describe the pressure dependent material stress in joint cartilage. We used the pressure dependent E-modulus E = f(s) to calculate the material stress. E = f(s) is a degree 4 polynomial . The indentor was pressed 0.4 mm into ... Read More