Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Hybrid FEM-BEM Approach for Two- and Three-Dimensional Open Boundary Magnetostatic Problems

A.Weddemann[1], D. Kappe[2], and A. Hütten[2]
[1]Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA, USA
[2]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In principal, the calculation of the magnetic state inside a magnetic object requires the evaluation of the field in the entire unbounded space. With finite element methods restricted to finite domains, commonly auxiliary domains are employed which result in a non-physical cut-off. Not only are these additional domains result in an increased number of degrees of freedom which are strictly ...

Transient Pseudo-3D Model of Multi-Beam Laser Thermal Treatment System

J. Brcka
Technology Development Center
TEL US Holdings, Inc.
Albany, NY

Laser thermal treatment (LTT) systems have applications in IC fabrication for improving low-k dielectrics properties, polymer curing and resist processing. This contribution deals with a transient model of fast scanning and pulsing laser multi-beam system used in semiconductor processing. General Heat Transfer application mode formulation with multi-scale modelling approaches are employed. ...

3D COMSOL Multiphysics® Model of a Plate Heat Exchanger to Support a Laboratory Teaching Environment - new

N. Medeiros[1], W. Clark[1]
[1]Worcester Polytechnic Institute, Worcester, MA, USA

Chemical engineering students and practitioners need an understanding of fluid flow and heat transfer inside heat exchangers. Because the flow within plate heat exchangers is difficult to visualize, we developed COMSOL Multiphysics® simulations of plate heat exchangers for students to study alongside a physical heat exchanger in a laboratory setting. Simulative experiments allow students to ...

A Field Simulator for Permanent Magnet Applications

E. Ledwosinska [1], J. Gammel [1]
[1] Silicon Labs, Austin, TX, USA

Permanent magnets are ubiquitous in our world today, from refrigerator magnets to industrial sensor applications. Often, the magnitude of the field at a specific distance from an arbitrarily shaped magnet of variable strength is a necessary parameter for end-use systems. We used the the AC/DC module of the COMSOL Multiphysics® software to simulate field strength of permanent magnets for aiding ...

挠曲电效应对多畴铁电薄膜 I-V 特性的影响

徐肖飞 [1], 徐光楠 [1], 刘志远 [1], 吴鹏 [1], 彭金霖 [1], 许保磊 [1],
[1] 湘潭大学,湘潭,湖南,中国

引言:铁电薄膜材料是一类具有优异性能的功能材料而被广泛应用于电子元器件中。理想状态下铁电薄膜材料为绝缘体或宽禁带半导体,但实际中铁电薄膜材料会因为制备或者在元器件中因为界面引入带电粒子或缺陷,引起较大的电流,影响电子元器件的性能。我们建立了考虑挠曲电效应及带电粒子漂移扩散的相场模型用以研究挠曲电效应对 Pt/PZT/Pt 多层结构的 I-V 特性的影响。 COMSOL Multiphysics® 的使用:我们使用 COMSOL 建立了一个二维平面模型(如图1),使用的是 PDE 接口,未使用案例库模型。 结果:我们通过模拟得到了不同挠曲电耦合系数下铁电薄膜的应变梯度云图(如图2)、极化云图(如图3)和电势云图(如图4),做出了不同挠曲电耦合系数下铁电薄膜的 I-V 曲线。 结论:极化与纵向应变梯度之间的耦合会导致铁电薄膜内电势的降低,增加载流子空穴在铁电薄膜内的浓度 ...

Several Benchmarks for Heat Transfer Problems in COMSOL Multiphysics®

S. Titarenko[1]
[1]University of Leeds, Leeds, United Kingdom

Nowadays all branches in modern science and industry tend to solve ever complicating problems. As the result the computational time increases considerably and it become very important to reduce the processing time and use available resources more efficiently. Parallelizing problem proves itself as efficient way to overcome the described problem. In the poster we compare different methods of ...

Resonating with Students in the Undergraduate Physics Laboratory: Comprehending Acoustic Vibrations

K. Stein, R. Peterson, J. Houlton, J. Knapp, B. Peplinski, C. Scheevel, and D. Swenson
Department of Physics, Bethel University, St. Paul, MN, USA

Acoustic vibrations are studied for several objects through the application of computational and optical diagnostic techniques. Computational studies are carried out using the eigenfrequency analysis option in the COMSOL structural mechanics application mode, whereas experimental optical studies utilize real-time stroboscopic holography. The two approaches provide complementary ...

Definition of Optimization Problem for Electromagnetic Linear Actuator

P. Piskur[1], W. Tarnowski[1], and K. Just[1]

[1]Koszalin Technical University, Koszalin, Poland

In this paper a poly-optimization of the design of the electromechanical actuator is presented. The shape of the actuator is defined by the decision variables. The number of decision variables under consideration is up to ten but in the next step while the multi-coils system will be analyzed the number of decision variables will increase up to hundred, so the genetic algorithm has been used. The ...

The Use of COMSOL in Teaching Heat and Moisture Transport Modeling in Building Constructions

A.W.M. van Schijndel[1] and H.L. Schellen[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

This paper presents the use of the multiphysics package COMSOL for teaching heat and moisture transport modeling in the research area of building physics. It includes a description on how COMSOL works and six exercises with 2D, 3D, steady state and transient models. It is concluded that COMSOL is a very useful tool for this kind of engineering education. Especially, the abstraction level of ...

Numerical Study of an LTD Stirling Engine with Porous Regenerator

N. Martaj[1], P. Rochelle[1][2], L. Grosu[1], R. Bennacer[3], and S. Savarese[4]
[1]Universitè de Paris, Paris, France
[2]Institut Jean Le Rond d'Alembert, Université Paris 6
[3]Laboratoire LEEVAM «Environnement, Energétique, Valorisation, Matériaux», Universitéde Cergy-Pontoise
[4]COMSOL France, 5 pl. R Schuman, 38000 Grenoble

The alternative engines of Stirling type, are engines running on "hot air", using both an external heat source and regeneration. They should be considered as an alternative for the effective conversion of renewable energy sources into work, with their theoretical yield equal to the theoretical Carnot limit. The output efficiency and the power of these engines are strongly related to the ...