Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling the Temperature-Dependent Dynamic Behavior of a Timber Bridge with Asphalt Pavement

B. Weber[1]
[1]Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland

The fundamental frequency and the corresponding damping value are the main design parameters for footbridges against excessive vibrations induced by pedestrians. Since pedestrians typically walk at a pace of 1.6–2.4 Hz, this frequency range as well as the range of the second harmonic, namely 3.5–4.5 Hz, should be avoided. However it has been observed that the fundamental frequency of a bridge ...

Numerical Simulation of Temperature and Stress Fields in the Rock Heating Experiment

P. Rálek[1], M. Hokr[1]
[1]Technical University in Liberec, Liberec, Czech Republic

Presented work is motivated by pre-realization phase of rock heating experiment in underground, testing properties for cyclic energy storage. Heating unit, installed in large borehole from end of a tunnel, is fixed to the rock face with the geo-polymer. Rest of the borehole is filled with isolation material. We used the Heat Transfer Module and the Structural Mechanics Module in COMSOL for ...

VLSI Layout Based Design Optimization of a Piezoresistive MEMS Pressure Sensors using COMSOL Multiphysics

R. Komaragiri[1], Sarath. S.[1], N. Kattabomman[1]
[1]NIT Calicut, Kozhikode, Kerala

This paper focuses on the diaphragm design and optimization of a piezoresistive Micro Electro Mechanical System (MEMS) pressure sensor by considering Very Large Scale Integration (VLSI) layout schemes. The aim of these studies is to find an optimal diaphragm shape by Finite Element Method (FEM) using COMSOL®, which is most suitable for VLSI layout. Optimal diaphragm shape is a diaphragm shape ...

Use of FEM in the Design of an HTS Insert Coil for a High Field NMR Magnet - new

E. Bosque[1]
[1]Applied Superconductivity Center, National High Magnetic Field Laboratory, Tallahassee, FL, USA

High temperature superconductors (HTS) allow larger current densities through coil wound electromagnets, which produce higher magnetic fields. A high field HTS insert demonstration magnet is being built with high field homogeneity (~1 ppm) for application in nuclear magnetic resonance (NMR). The HTS NMR system is inserted into the bore of an existing high field magnet. A compensating Helmholtz ...

COMSOL Simulations for Steady State Thermal Hydraulics Analyses of ORNL’s High Flux Isotope Reactor

P.K. Jain[1], V.B. Khane[2], J.D. Freels[1]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA
[2]Missouri University of Science and Technology, Rolla, MO, USA

Simulation models for steady state thermal hydraulics analyses of ORNL’s HFIR have been developed using COMSOL. A single fuel plate and coolant channel of each type of HFIR fuel element was modeled in three dimensions. The standard k-? turbulence model was used in simulating turbulent flow with conjugate heat transfer. The COMSOL models were developed to be fully parameterized to allow ...

Structural Analysis of a Pressure Sensor for High Temperature Environments

S.V. De Guido[1], G.S. Masi[1], P. Vladimirovich Miodushevsky[1], L. Vasanelli[1]
[1]Department of Innovation Engineering, University of Salento, Lecce, Italy

Pressure sensors operating at the temperature higher that 500 °C are absent in the world market. Our goal is to develop a pressure sensor that can operate at the high temperature up to 700 °C. Our sensor will be made up of a ceramic sensible element and a metallic case. The sensible element will be a ceramic beam with a Weathstone bridge on its surface. A structural analysis on the case has been ...

Numerical Modeling and Performance Optimization Study of a Diaphragm Pump for Medical Application

I. Lupelli[1], P. Gaudio[1], A. Malizia[1], R. Quaranta[1]
[1]Department of Industrial Engineering, University of Rome “Tor Vergata”, Roma, Italy

In this contribution we present the results of the numerical modeling and performance optimization study of a diaphragm pump for drug infusion. The main objective is to develop a numerical model that replicates the pumping cycle (400ms) and also provides indications about the variation of pumping performance as consequence of the variation of the chamber-diaphragm system geometry, diaphragm ...

Elasto-Plastic FEM Models Explain the Emplacement of Shallow Magma Intrusions in Volcanic Complexes

A. Bistacchi[1]
[1]Università degli Studi di Milano Bicocca, Milano, Italy

We present numerical models and field data that aid understanding of volcano-tectonic processes related to the propagation of inclined sheets and dykes under a stress field resulting from the inflation of a shallow magma chamber. Structural field data from the classical Cuillins cone-sheet complex (Isle of Skye) show that sheets have a constant average dip angle (45°), with pure dilational or ...

Residual Stresses in a Panel Manufactured Using EBF3 Process

J. Gaillard[1], D. Locatelli[2], S. Mulani[3], and R. Kapania[3]
[1]Microelectronics and Micromechanics Department, Engineering school of ENSICAEN (Ecole National Superieure d'Ingénieurs de Caen), Caen, France
[2] Engineering Science and Mechanics Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
[3] Aerospace and Ocean Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA

The residual stresses developed in a stiffened panel manufactured using Electron Beam Freeform Fabrication (EBF3) process were studied. EBF3 process is a layer additive process that can be used to build near-net shaped parts directly using computer controlled techniques, which can be used for aerospace structures. A COMSOL model was created to simulate the residual stresses using a thermo ...

Modeling the Buckling of Isogrid Plates

E. Gutierrez-Miravete[1], and J. Lavin[2]
[1]Rensselaer at Hartford, Hartford, CT, USA
[2]UTC-Pratt & Whitney, East Hartford, CT, USA

Isogrid plate components are widely used in aerospace structures because of their greater stiffness to weight ratios compared with thicker plates of the same material. Isogrid plates consist of flat plates conjoined with thin ribs in specific geometric patterns. The purpose of this study was to investigate the applicability of COMSOL Multiphysics for the determination of buckling loads and modes ...

1 - 10 of 350 First | < Previous | Next > | Last