Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Investigation of Strouhal Frequencies of Two Staggered Bluff Bodies

Eswaran M[1], P. Goyal[1], Anu Dutta[1], G.R. Reddy[1], R. K. Singh [1], K.K. Vaze[1]
[1]Bhabha Atomic Research Centre, Mumbai, India

A 2-D unsteady viscous flow around two cylinders is studied by numerical solutions of the unsteady Navier-Stokes equations with a finite element formulation using COMSOL Multiphysics®. The results of a numerical investigation of the Strouhal frequencies of two identical, stationary, parallel circular cylinders arranged in staggered configurations is presented in this paper. A simple two cylinder ...

Stochastic Diffusion of Calcium Ions Through a Nanopore in the Cell Membrane Created by Electroporation - new

O. Henao[1], V. Gómez[1], I. De La Pava[1], J. Sánchez [1]
[1]Grupo Fisiología Celular y Aplicada, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia

We simulated the diffusion of calcium ions through a nanopore created in the cell membrane by electroporation, in presence and absence of the external electric field responsible of the membrane permeabilization. First we solved the set of coupled differential equations that describe the process of ionic diffusion in a 2D nanopore model using the AC/DC Module and the Transport of Diluted Species ...

Modelling of the Oxygen Consumption of Cells in the Cell Culturing Platform - new

A. Niazi[1]
[1]School of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom

A device for monitoring the oxygen consumption of cells has been developed, which consists of two parts; a cell culturing platform (CCP) and an oxygen sensing chip. The CCP possesses inlet and outlet pipes to direct the fluid under the test to the cell culturing chamber through the inlet pipe and goes out of the outlet pipe after being partially consumed by the cells. In this abstract, the ...

Heat Transfer in Adsorption Heat Exchangers between Pellets and Fins - new

E. Laurenz[1], G. Füldner[1], L. Schnabel[1]
[1]Fraunhofer Institute for Solar Energy Systems (ISE), Freiburg, Germany

Adsorption heat exchangers (AdHXs) are important components in adsorption heat pumps and chillers, a primary energy efficient source of heating and cooling. Due to availability and established inexpensive manufacturing fin-and-tube type heat exchangers with beds of adsorption pellets in the finned space are widely used in state of the art products (Figure 1). For design and optimization the ...

Modeling of Turbulent Combustion in COMSOL Multiphysics®

D. Lahaye[1], L. Cheng[2]
[1]DIAM, EEMCS Faculty, TU Delft, The Netherlands
[2]Tsinghua University, Beijing, China

In the production of high quality materials by a heat treatment, it is indispensable to accurately predict the temperature inside the furnaces being employed. In this work we develop a turbulent combustion model for the heat being released by gas burners inside a shaft kiln. Turbulent combustion is the strongly coupled phenomena of the chemically reacting fuel and oxygen in a turbulent flow. ...

Simulation of the Coalescence and Subsequent Mixing of Inkjet Printed Droplets

M.H.A. van Dongen[1], H.J. van Halewijn[2]
[1]Fontys University of Applied Sciences, Expertise Centre Thin Films & Functional Materials, Eindhoven, The Netherlands
[2]Fontys University of Applied Sciences, Eindhoven, The Netherlands

Coalescence of droplets is a widely investigated phenomenon. In inkjet printing micrometer sized droplets are deposited on a substrate which when positioned close enough to each other will coalesce and mix. Little is known about the flows and mixing behaviour within these small droplets. In this investigation we follow the time evolved coalescence of two droplets with volume ratios ranging from ...

Simulation of Geomechanical Reservoir Behavior during SAGD Process Using COMSOL Multiphysics®

X. Gong[1], R. Wan[1]
[1]University of Calgary, Calgary, AB, Canada

THM (Thermo-Hydro-Mechanical) behavior of the reservoir during SAGD (Steam-Assistant-Gravity-Drainage) was studied through a proper constitutive modeling of the porous media. Specifically, a generalized density-stress-fabric dependent elasto-plastic model with stress-dilatancy and plastic damage as main ingredients was implemented into COMSOL Multiphysics®, to model geomechanical behavior during ...

Finite Element Study of the Mass Transfer in Annular Reactor - new

Y. M. S. El-Shazly[1], S. W. Eletriby[1]
[1]Alexandria University, Alexandria, Alexandria, Egypt.

The annular reactor is a very useful design to carry many chemical reactions. In this study, COMSOL Multiphysics® software was used to study the isothermal mass transfer from the inner side of the outer tube of the annular reactor in the range of 200

Boundary Value Effects on Migration Patterns in Hydraulically Fractured Shale Formations - new

T. Aseeperi[1]
[1]Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA

During the hydraulic fracturing process, there can be possible re-activation of closed/sealed faults and natural fractures in the formation, which may lead to changes in the boundary conditions of the reservoir. While study models of shale gas formations have utilized the concept of a closed reservoir in order to optimize the production of gas in the well-bore, this assumption cannot be adopted ...

激光熔覆过程中的传热传质研究

甘政涛 [1],
[1] 中国科学院力学研究所,北京,中国

基于 Level-Set 界面跟踪方法建立了激光熔覆过程的三维瞬态数值模型,研究了瞬态熔化和凝固过程中传热传质的演化规律。该模型使用 Level-Set 方法跟踪熔池气/液界面,采用焓-多孔度(enthalpy-porosity)方法得到了固/液界面之间的糊状区,并考虑了质量添加、材料熔化/凝固、热毛细效应(Marangoni效应)、浮力效应、活性元素质量传输等对熔池流动和界面的影响。通过该模型,具体分析了质量添加、力和界面平衡条件对熔池气/液界面的影响,以及由熔池温度/浓度分布引起的热毛细效应、金属材料的熔/凝过程和熔池流动形式对熔池固/液界面的影响。结果表明:熔池的气/液界面主要由力平衡条件决定,截面近似为圆弧型,其尺寸与单位时间的质量添加量相关。熔池的固/液形态由于熔池的表面温度梯度和表面活性元素含量共同引起的熔池流动方向和速度的变化,出现三种不同的类型,分别为下凹型(熔池内流) ...