Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Multiphase Porous Medium Transport Model with Distributed Sublimation Front to Simulate Vacuum Freeze Drying

A. Warning[1], J. M. R. Arquiza[1], A. K. Datta[1]
[1]Cornell University, Ithaca, NY, USA

A continuum, porous medium formulation with non-equilibrium sublimation was developed and validated for freeze drying without and with uniform microwave volumetric heating. The model incorporates the effect of Knudsen flow at low pressure and low permeability freeze drying. The distributed, non-equilibrium sublimation demonstrated that the sublimation front is a sharp boundary for high ice ...

Modeling of Turbulent Combustion in COMSOL Multiphysics®

D. Lahaye[1], L. Cheng[2]
[1]DIAM, EEMCS Faculty, TU Delft, The Netherlands
[2]Tsinghua University, Beijing, China

In the production of high quality materials by a heat treatment, it is indispensable to accurately predict the temperature inside the furnaces being employed. In this work we develop a turbulent combustion model for the heat being released by gas burners inside a shaft kiln. Turbulent combustion is the strongly coupled phenomena of the chemically reacting fuel and oxygen in a turbulent flow. We ...

Entropic Evaluation of Dean Flow Micromixers

P. S. Fodor[1], M. Kaufman[1]
[1]Cleveland State University, Cleveland, OH, USA

In this work we investigate computationally the use of spiral channels at Reynolds numbers from 25 to 900 as a mixing structure (Figure 1) using COMSOL Multiphysics, the CFD Module, and the Chemical Species Transport physics. In this system, the centrifugal forces experienced by the fluid as it travels along the curved trajectory induce counter-rotating flows. The presence of these transversal ...

Two-Phase Flow and Multiphysics Simulations in COMSOL


Dr. Singh has been working at the Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai since 2000. He has a Ph.D. from the Department of Chemical Engineering, IIT Bombay. He is a recipient of the Homi Bhabha Medal of Bhabha Atomic Research Centre in year 2000, Young Engineer Award of the Department of Atomic Energy in year 2008 and Award for Excellence in Thesis Work at IIT ...

Food Cooking Process. Numerical Simulation of the Transport Phenomena

B. Bisceglia[1], A. Brasiello[1], R. Pappacena[1], R. Vietri[1]
[1]University of Salerno, Department of Industrial Engineering, Fisciano (SA), Italy

Aim of the study is to determine the influence of some of the most important operating variables, especially humidity and temperature, of drying air on the performance of cooking process of pork meat. The process is simulated using finite elements software COMSOL Multiphysics®. The proposed model considers two geometries: cylindrical and parallelepiped, with fixed physical properties and ...

Modeling of Transport Phenomena in Gas Tungsten Arc Welding of Ni to 304 Stainless Steel

A. Bahrami[1], D. K. Aidun[1]
[1]MAE Department, Clarkson University, Potsdam, NY, USA

COMSOL Multiphysics® is used to simulate the transport phenomena in arc welding of Nickel to 304SS. Electric Currents (ec) and Magnetic Fields (mf) are used to solve for the Lorentz force which is one of the volume forces. Laminar Flow (spf) is used to simulate flow field. The Lorentz and buoyancy forces are applied as volume forces to the fluid domain. Marangoni effect also is applied to the ...

Actively Controlled Ionic Current Gating In Nanopores

G. Zhang[1], S. Bearden[1]
[1]Clemson University, Clemson, SC, USA

It is necessary to understand and control nanopore behavior in order to develop biosensors for a variety of applications including DNA sequencing. The fluidics of nanopore devices we fabricated exhibits a range of interesting phenomena, such as enhanced conductance and current rectification. By electrically biasing nanopores, we were able to actively control the nanopore conductance in real time ...

Modelling of Heat and Mass Transfer in Food Products

[1]M.B. Andreasen

[1]Danish Technological Institute, Aarhus C, Denmark

The use of the finite element method for understanding and analyzing the freezing and drying processes of food products is in focus in this paper. The objective of this study is to develop a model that can predict temperature distribution and weight loss of food products during the freezing and drying processes. The problem was solved by utilizing heat, mass transfer and moving mesh model. In ...

Simulating the Electrical Double Layer Capacitance

G. Zhang
Clemson University, Clemson, SC, USA

When a solid surface makes contact with a liquid medium, an electrical double layer (EDL) structure forms spontaneously through thermodynamic interaction between electrons and ions. In this study, we developed a computational model using commercial finite element analysis package COMSOL Multiphysics to simulate the double layer structure and quantify the EDL capacitance for the first time. In the ...

Moisture Risks in Multi-layered Walls - Comparison of COMSOL Multiphysics® and WUFI®PLUS Models with Experimental Results

A. Ozolins[1], A. Jakovics[1]
[1]Laboratory for Mathematical Modelling of Technological and Environmental Processes, Riga, Latvia

Moisture can cause serious damages in different building components therefore the heat and moisture calculation in building constructions are important tasks. In the current paper, two different multi-layered walls, mainly consisted of wooden materials and mineral wool, are analyzed. Risks of mould growth under Latvian climate conditions are estimated using 3 different approaches: experimental ...

Quick Search

1 - 10 of 340 First | < Previous | Next > | Last