How to Model Heat and Moisture Transport in Porous Media with COMSOL®

Claire Bost June 14, 2017

When ambient air flows through porous media, it carries moisture. In this process, temperature and moisture are coupled: The vapor saturates depending on the temperature conditions, while latent heat effects due to evaporation and condensation modify the temperature. We discussed heat and moisture transport in air in a previous blog post. Let’s address the specific transport processes we need to consider in pores and how to model heat and moisture transport in porous media with the COMSOL Multiphysics® software.

Read More

Claire Bost June 9, 2017

Whenever ambient air is considered in an engineering context, temperature and moisture are intrinsically related. Vapor reaches a saturation point depending on the temperature and pressure conditions, while the action of latent heat modifies temperature distribution. These phenomena must be considered to optimize processes affected by phase changes, particularly when trying to prevent condensation occurring in devices. Let’s see how to model heat and moisture transport in air with the COMSOL Multiphysics® software.

Read More

Bridget Paulus June 8, 2017

Solar-grade silicon is becoming more popular for applications such as communications and photovoltaics. While it’s important to keep up with this growing demand, the current method of producing solar-grade silicon is energy intensive and expensive. To find a more efficient process, researchers at JPM Silicon GmbH explored a novel method using a microwave furnace. By simulating the internal processes, they aim to optimize their microwave furnace design to produce low-cost solar-grade silicon.

Read More

Bridget Cunningham May 18, 2017

When the German engineer F. H. Poetsch first developed the artificial ground freezing (AGF) method in 1883, he did so to avoid water within Belgian coal mines. The method, which first received praise in the late 1800s, remains similar to its original form and is still valuable today. To develop a more effective AGF method, we can turn to simulation analyses.

Read More

Walter Frei April 28, 2017

Whenever we have a heated or cooled part exposed to air, there is some transfer of heat from the part to the air via convection. The movement of the air can be either forced, via a fan, or free, as a result of the natural buoyancy variations due to changes in the air temperature. Today, we will look at several different ways of modeling these types of convection in the COMSOL Multiphysics® software.

Read More

Bridget Cunningham April 26, 2017

Sometimes when you bake a cake, it doesn’t turn out how you expected. Part of this is due to the underlying heat and mass transfer phenomena that occur within the baking process, which affect the end result. With tools like the COMSOL Multiphysics® software, you can study and predict how these mechanisms work and use this knowledge to bake a better cake.

Read More

Bridget Cunningham March 9, 2017

When a superconducting magnet suddenly transitions to a normal state — known as a quench — its coils may overheat. Quench detection and protection systems are often included in the magnets to enable safer operation. For these systems to be effective, it’s important to understand the resulting electrothermal transient phenomena that take place within the magnet. Using numerical simulation, we can develop sophisticated systems that prevent possible disruption effects.

Read More

Nancy Bannach March 8, 2017

Thermoelectric coolers come in various types and sizes, including single-stage and multistage devices. Their application area is large, as they are used in both consumer products like cooling boxes and as temperature controllers in satellites. If you are looking to analyze the design of a thermoelectric cooler and optimize it for a specific application area, a simulation app is an efficient way to accomplish your goals. We discuss how to use the Thermoelectric Cooler demo app in this blog post.

Read More

Caty Fairclough March 6, 2017

One way to design utility boilers with high thermal efficiency is to improve their furnaces — the most important part in their energy conversion process. Studying furnaces in utility boilers requires engineers to account for radiation, which can be difficult to solve for analytically and expensive to study experimentally. As an alternative, we can use the COMSOL Multiphysics® software to analyze radiative heat transfer in utility boiler furnaces and improve their designs.

Read More

Caty Fairclough February 23, 2017

Maintaining cool temperatures in buildings is necessary to keep people comfortable, particularly for those living in hot climates. For houses that aren’t optimized for thermal performance, cooling requires large amounts of energy and money. To reduce these costs, researchers from the University of Ferrara, Italy looked to improve roofs as part of the Life HEROTILE project. To accomplish this, they modeled novel roof tiles that are designed to increase air permeability and lower cooling costs.

Read More

Categories

Magnus Ringh January 25, 2017

Even if the barbecue season has not started yet in many parts of the Northern Hemisphere, there is always time to think about how to improve your grilling skills. In this blog post, we show how to use the COMSOL Multiphysics® software to determine the best way to arrange the coals or briquettes in a charcoal grill for even heat and to avoid hot spots. Even heat is required when making a grilled pizza, for example.

Read More


Categories


Tags

1 2 3 14