How to Generate Randomized Inhomogeneous Material Data

Bjorn Sjodin June 20, 2017

You can generate and visualize randomized material data with specified statistical properties determined by a spectral density distribution by using the tools available under the Results node in the COMSOL Multiphysics® software. In this blog post, we show examples that are quite general and have potential uses in many application areas, including heat transfer, structural mechanics, subsurface flow, and more.

Read More

Magnus Ringh May 10, 2017

If you’re looking for ways to manage multiple solutions, version 5.3 of the COMSOL Multiphysics® software offers several new tools for doing so. These include options for combining two solutions into one; storing solutions in different data sets so that they can be postprocessed and analyzed individually; and joining solutions to, for example, compare them. In this blog post, we will look at how to use these new tools.

Read More

Temesgen Kindo May 9, 2017

When your simulations consume significant memory, do you buy a bigger computer? When they take too long to solve, do you just run them overnight? Often, you don’t have another option. But sometimes, if you have the right tools, you can find a better approach by exploiting the mathematical structure. Today, we will show you how to use the so-called maximum principles to save computational resources and time in the COMSOL Multiphysics® software.

Read More

Walter Frei April 4, 2017

Have you ever wanted to query the results of your model within an arbitrary geometric subregion? You might think that this requires adding geometries to a model and recomputing the solution. Instead, in the COMSOL Multiphysics® software, we can just add and reposition a part solely for the purpose of evaluating the results. We will demonstrate this in the context of computing mutual inductance between coils and discuss simpler techniques that can be used for a reduced set of cases.

Read More

Walter Frei March 2, 2017

Have you ever modeled deforming objects in the COMSOL Multiphysics® software and wanted to know the distance between them? In today’s blog post, we will look at how to compute distances between objects using methods for determining the closest distance field. We’ll also find out how to use the distance field as a part of a multiphysics model.

Read More

Andrew Griesmer December 8, 2016

If you’ve read the COMSOL Blog before, you might know that we like to include animations in our blog posts to help illustrate concepts more clearly. Most of these animations are exported directly from the COMSOL Multiphysics® software, which means that you can export animations for your own simulations, too. At the bottom of this post, we link to a video to show you how to do that.

Read More

Caty Fairclough July 12, 2016

You’ve generated your simulation results and you want to communicate your findings with other people. To do so clearly and effectively, you will need to create easy-to-understand, eye-catching visualizations. Therefore, as of COMSOL Multiphysics® software version 5.2a, you now have six new color tables to further enhance your postprocessing. Let’s learn about the inspiration behind these color tables and take a look at a few specific use cases.

Read More

Magnus Ringh April 27, 2016

You can use the residual operator, new with COMSOL Multiphysics version 5.2, to evaluate and plot your model’s algebraic residual in order to troubleshoot convergence issues. This blog post demonstrates the use of the residual operator for visualizing and understanding the convergence properties of a turbulent flow simulation.

Read More

Lexi Carver February 3, 2016

Adding annotation plots to your plot groups is an easy way to label the plots of your simulation results with names, comments, and values of quantities evaluated at specified locations. In this blog post, we’ll explore adding annotation plots to a model of a heat sink.

Read More

Bjorn Sjodin February 2, 2016

Have you ever run a large parametric sweep overnight, only to discover the next morning that the parametric solver is still not finished? You may wish you could inspect the solutions for the parameters that are already computed while waiting for the last few parameters to converge. The remedy to this problem is to use a batch sweep, which automatically saves the parametric solutions that were already computed on a file that you can open for visualization and postprocessing purposes.

Read More

Nancy Bannach January 12, 2016

Modeling complex geometries with thin structures can be very costly in terms of computational effort, particularly as such structures require quite a lot of mesh elements in order to resolve them. COMSOL Multiphysics provides dedicated features for modeling thin structures so that such models can be solved efficiently while maintaining accuracy. To set up and postprocess thin structures, COMSOL Multiphysics also provides specialized operators to help you consider all the relevant parameters required for accurate results.

Read More


Categories


Tags

1 2 3 4