Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Understanding “Mutual Inductance” using COMSOL Multiphysics®

H.A. Ghali[1] and H.A. Rahman[1]
[1]Electrical Engineering Department British University in Egypt “BUE”, El Sherouk City, Egypt

A teaching platform that could be used to help students understand concepts such as; flux linking and mutual inductance has been developed using the AC/DC Module of COMSOL Multiphysics®. This is achieved through the accurate determination of different magnetic flux density components within the proposed geometry. Furthermore, based on the structure configuration, students can use obtained ...

Classical Models of the Interface Between an Electrode and an Electrolyte

E. Gongadze[1], S. Petersen[1], U. Beck[2], and U. van Rienen[1]
[1]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
[2]Institute of Electronic Appliances and Circuits, University of Rostock,
Rostock, Germany

The Electrical Double Layer (EDL) plays a major role in understanding the interface between a charged surface (e.g. an implant) and ionic liquids (e.g. body fluids). The three classical models of the EDL (Helmholtz, Gouy, and Chapman-Stern) are numerically solved for a flat surface electrode in the 3D Electrostatics application mode of COMSOL Multiphysics® 3.5a. The values of the electric ...

Hyperbolic Heat Transfer Equation for Radiofrequency Heating: Comparison between Analytical and COMSOL Solutions

V. Romero-García[1], M. Trujillo[2], M.J. Rivera[2], J.A. López Molina[2], and E.J. Berjano[3]
[1]Centro de Tecnologías Físicas Acústica, Universidad Politécnica de Valencia, Valencia, Spain
[2]Dpto. Matemática Aplicada, Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Valencia, Spain
[3]Institute for Research and Innovation on Bioengineering, Universidad Politécnica de Valencia, Valencia, Spain

The Radiofrequency Heating (RFH) is widely employed to heat biological tissue in different surgical procedures. Most models analyze the RFH employing a Parabolic Heat Transfer Equation (PHTE) based on Fourier's theory. The PHTE can be used for problems involving long heating times or low thermal gradients. However, when the problem involves short heating times or extreme thermal gradients it is ...

The Full-System Approach for Elastohydrodynamic Lubrication

N. Fillot[1], T. Doki-Thonon[1], and W. Habchi[2]
[1]CNRS, INSA, Université de Lyon, Lyon, France
[2]Department of Industrial and Mechanical Engineering, Lebanese American University, Byblos, Lebanon

A ball is in contact with a plane, and a lubricant separates the two surfaces to decrease friction during their relative motion. To avoid wear, the lubricant film thickness should be higher than the surface roughness. The goal of this paper is to show how it is possible to solve efficiently the problem of elastohydrodynamics lubrication with COMSOL Multiphysics®, using a PDE (Partial ...

Fast 2D Simulation of Superconductors: A Multiscale Approach

V.M. Rodriguez-Zermeno[1], M.P. Sørensen[1], N.F. Pedersen[2], N. Mijatovic[2], and A.B. Abrahamsen[3]
[1]DTU Mathematics, Lyngby, Denmark
[2]DTU Electrical Engineering, Lyngby, Denmark
[3]Materials Research Division, Risø, DTU, Roskilde, Denmark

This work presents a method to calculate AC losses in thin conductors such as the commercially available second generation superconducting wires through a multiscale meshing technique. The main idea is to use large aspect ratio elements to accurately simulate thin material layers. For a single thin superconductor, several standard test cases are simulated including transport current, externally ...

Dynamic Crack Propagation in Fiber Reinforced Composites

C. Caruso[1], P. Lonetti[1], and A. Manna[1]

[1]Department of Structural Engineering, University of Calabria, Arcavacata di Rende, CS, Italy

A generalized model to predict dynamic crack propagation in fiber composite structures is proposed. The proposed approach is based on a generalized formulation based on the Fracture Mechanics approach and Moving mesh methodology. Consistently to the Fracture Mechanics, the crack propagation depends from the energy release rate and its mode components, which are calculated by means of the ...

Calculus of the Elastic Properties of a Beam Cross Section

A. Genoese[1], A. Genoese[1], and G. Garcea[1]
[1]Dipartimento di Modellistica per l'Ingegneria, Università della Calabria, Arcavacata di Rende, CS, Italy

Saint-Venant general rod theory is used to calculate the elastic factors of a section through the numerical solution of a system of partial differential equations. The elastic properties so evaluated are used in a geometric nonlinear analysis of 3D beam structures with general cross-section to calculate some important quantities such as the stiffness matrix. Linear solutions, such as the Saint ...

Simulation of Daisy Chain Flip-Chip Interconnections

G.S. Durante[1] and M. Fretz[1]

[1]CSEM Zentralschweiz, Alpnach Dorf, Switzerland

Flip-chip interconnection technologies have been tested through the use of a test chip with embedded single-bump daisy chains. The Flip-Chip technologies are selected among Au bump Thermocompression (TC) with and without Nonconductive Adhesives (NCA) underfiller, anisotropic conductive adhesive (ACA) bonding, and AuSn20 eutectic solder. The single bumps were then measured with a high precision ...

FSI Analysis of Microcantilevers Vibrating in Fluid Environment

A. Ricci[1] and E. Giuri[1]

[1]Materials and Microsystems Laboratory (CHI-Lab), Politecnico di Torino, Torino, Italy

Cantilever vibration in fluid environment is probably one of the most common Fluid Structure Interaction problems in the field of Micro/Nano Electro Mechanical Systems. Usually the effect of fluid on cantilever oscillation is characterized in terms of mode resonance frequencies and quality factors (Qs). In this work a new approach to the above FSI problem is proposed: modes Q factors and ...

Modelling of Heat and Mass Transfer in Food Products

[1]M.B. Andreasen

[1]Danish Technological Institute, Aarhus C, Denmark

The use of the finite element method for understanding and analyzing the freezing and drying processes of food products is in focus in this paper. The objective of this study is to develop a model that can predict temperature distribution and weight loss of food products during the freezing and drying processes. The problem was solved by utilizing heat, mass transfer and moving mesh model. In ...