Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Building a Complex Geological Model Using Parametric Surfaces

S. Hoyer[1], M. Bottig[1], F. Zekiri[1], G. Götzl[1], A.K. Brüstle[1], G. Schubert[1], A. Nador[2]
[1]Geological survey of Austria, Vienna, Austria
[2]Geological Institute of Hungary, Budapest, Hungary

Temperature measurements of the subsurface are available due to hydrocarbon exploration in the project area, where the average drilling depth is about 2-4 km and the deepest well reaches about 8.5 km. Since the data is heavily uneven distributed, standard interpolation techniques did not deliver satisfying results. This is why numerical modeling was applied to assess the thermal regime of the ...

Bone Remodeling Following Total Hip Replacement: Short Stem Versus Long Stem Implants

M.S. Yeoman[1], A. Cizinauskas[1], C. Lowry[2], G. Vincent[3], S. Collins[3], D. Simpson[3]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[2]Corin Group, Cirencester, United Kingdom
[3]Imoprhics, Manchester, United Kingdom

Bone resorption around hip stems, in particular periprosthetic bone loss, is a common observation post-operatively. A number of factors influence the amount of bone loss over time and the mechanical environment following total hip replacement (THR) is important. Conventional long stem prostheses have been shown to transfer loads distally, resulting in bone loss of the proximal femur. More ...

COMSOL Computational Fluid Dynamics for Microreactors Used in Volatile Organic Compounds Catalytic Elimination

M. Olea[1], S. Odiba[1], S. Hodgson[1], A. Adgar[1]
[1]School of Science and Engineering, Teesside University, Middlesbrough, United Kingdom

Volatile organic compounds (VOCs) are organic chemicals that will evaporate easily into the air at room temperature and contribute majorly to the formation of photochemical ozone. They are emitted as gases from certain solids and liquids in to the atmosphere and affect indoor and outdoor air quality. They includes acetone, benzene, ethylene glycol, formaldehyde, methylene chloride, ...

Modeling Pit Lake Flooding After Mine Closure

S. Jordana[1], A. Nardi[1]
[1]Amphos 21, Barcelona, Spain

Most of mining works, either on the surface or in the underground, demand continuous groundwater pumping in order to operate under dry conditions. When the mining activity stops, dewatering also stops and mining facilities begin to flood, quite quickly at the beginning but becoming slower as the water level in the pit lake rises. The rise of the surface of the lake decelerates due to the bigger ...

Modeling Thermal Bridging at Interface Conditions: Analysis of Solutions for Reducing Thermal Bridges Effects on Building Energy Consumption

C. Balocco[1], E. Marmonti[1]
[1]Dipartimento di Energetica, Università di Firenze, Firenze, Italy

In Europe considerable building activity can be expected over the coming decades; Net Zero Energy Buildings refers to a building with minimal power, until maximum 15 kW/m^2. In both cases this requires very well insulated buildings with minimal thermal bridges. Concrete balconies, that extend the floor slab through the building envelope, are a common example of thermal bridging, where structural ...

Reactive Transport Processes in Compacted Bentonite

A.E. Idiart[1], M. Pekala[1], A. Nardi[1], D. Arcos[1]
[1]Amphos 21, Barcelona, Spain

The Swedish Organization for Radioactive Waste (SKB) is considering disposal High Level Wastes in a deep underground repository. Bentonite clay is planned to be used in the near-field of the waste packages as buffer material. The buffer is expected to provide a favorable environment with limited radionuclide migration due to slow diffusion and retardation by sorption and cation-exchange effects. ...

Coupled Hydrochemical Modeling for the Optimal Design of an In-situ Redox Experiment

P. Trinchero[1], J. Molinero[1], G. Román-Ross[1], A. Nardi[1], L.M. De Vries[1], T. Karvonen[2], P. Pitkänen[3]
[1]Amphos 21, Barcelona, Spain
[2]WaterHope, Helsinki, Finland
[3]Posiva, Eurajoki, Finland

In this work, we present a number of scoping calculations that have been carried out to design an in-situ redox experiment (Figure 1) focused on assessing potential changes in the pH and redox conditions and in the buffering capacity of the Olkiluoto bedrock (i.e. the site for the Finnish spent fuel repository). A characteristic of these models lies in the need to integrate prior information, ...

High Frequency Electromagnetic Device Modeling with COMSOL: Simulation vs. Experiment

P. Alotto[1], F. Dughiero[1], F. Bressan[1], M. Bullo[1]
[1]Università di Padova, Dipartimento di Ingegneria Industriale, Padova, Italy

Computer simulation is mandatory for the optimization of electromagnetic devices. Here we concentrate on two classes of devices operating in the MHz and GHz range, namely microwave ovens and TEM cells for electromagnetic compatibility testing. In particular we concentrate on the issue that numerical results are usually different from the experimental ones and this can be due, among others ...

Quick Search

221 - 228 of 228 First | < Previous | Next > | Last