Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Finite Element Modeling for Inspection of CANDU® Steam Generators - new

S. G. Mokros[1], P. R. Underhill[2], J. Morelli[1], T. W. Krause[2]
[1]Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, ON, Canada
[2]Department of Physics, Royal Military College of Canada, Kingston, ON, Canada

Steam generators (SGs) are used in CANDU® nuclear reactors as heat exchangers to convert water into steam using heat generated in the reactor core. Ferrous trefoil broach support structures prevent excessive vibration of thousands of SG tubes. A probe that uses pulsed eddy current (PEC) technology has been designed for inspection of support structures, from within SG tubes, to detect and ...

安装在有限大障板上的轴对称扬声器特性的近似计算方法

陆晓 [1], 温周斌 [1],
[1] 浙江中科电声研发中心,嘉善,浙江,中国

使用 COMSOL Multiphysics® 仿真轴对称扬声器一般可采用 2D 轴对称模型,但在这种坐标系下无法建立扬声器测量中常用的矩形障板模型,而选择计算安装在无限大障板上扬声器的声特性,其仿真计算结果又与常见的标准障板上的测量结果在中低频段存在较大差异。 为了使无限大障板上的仿真结果与标准障板(或其它有限大障板)上的测量结果相一致,提出一种方法,利用 COMSOL 软件的 Parameter Sweep 功能,通过多次进行 2D 轴对称的电磁场、结构力学和声学三场耦合的扬声器仿真计算及相应后处理,得到安装在有限大障板上的扬声器正前方的声特性。 采用该方法可在较短时间内比较准确地计算得到安装在任意形状的有限大障板上的扬声器的声压级和谐波失真等特性。如图1和图2所示,采用该方法得到的声压级和总谐波失真曲线(红色),与测量结果(黑色)趋势和细节都比较一致。 ...

Investigating Magnetic and Electric Fields Couplings for 3D Models in Harmonic and Transient States

O. Maloberti [1], O. Mansour [1]
[1] ESIEE Amiens, Amiens, France

At present, no 3D transient magnetic and electric fields formulation with strong eddy currents and high electric fields is available in the physical applications with COMSOL Multiphysics® software. However, some industrial products need such a tool, as it is the case for induction coils of pulsed magnetic technologies. The principle is to induce a force thanks to strong eddy currents induced by ...

Inductance of Magnetic Plated Wires as a Function of Frequency and Plating Thickness

T. Graf[1], O. Schälli[1], A. Furrer[1], and P. Marty[1]

[1]Technik und Architektur, Hochschule Luzern, Horw, Switzerland

This paper analyzes the magnetic behavior of electroplated wires. For this purpose the resistance and inductance of single turn loops and coils have been simulated and measured. The measurement is delicate due to the influence of a stray capacitance. We show that the quality factor of magnetic plated loops and coils can be tuned easily by the plating thickness. In addition the quality factor of ...

Electromagnetic and Coupled Field Computations: A Perspective

S. V. Kulkarni
Indian Institute of Technology
Bombay, India

S. V. Kulkarni a Professor in Electrical Engineering Department, Indian Institute of Technology, Bombay, India. Previously, he worked at Crompton Greaves Limited and specialized in the design and development of transformers up to 400 kV class. He has authored book \"Transformer Engineering: Design and Practice\" published by Marcel Dekker, Taylor & Francis Group. The author of more than 120 ...

Two-Dimensional Quasi–Static Analysis For Induction Motor with Faulty Rotor

M. Manna, and S. Miglani
SLIET
Sangrur
Punjab, India

This paper presents the Finite Element Method technique for predicting performance of Induction motor having Electric and Magnetic asymmetry for rotor cage due to some broken rotor bars. The motor parameters like magnetic vector potential, flux density, surface currents have been determined very precisely by carrying out two dimensional quasi static, transient analysis and by using one of the ...

Quasielectrostatic Induction on Stationary Vehicles under High Voltage Power Lines

J. Leman[1]
[1]POWER Engineers, Hailey, ID, USA

The National Electrical Safety Code (NESC) requires that high voltage power lines in the U.S. be designed to limit electrostatic effects on nearby equipment. An example is that of a large vehicle underneath a transmission line. The tires insulate the vehicle’s body from ground. If a person standing on the ground makes contact with the vehicle surface, 60 Hz current can pass through the ...

Study of Resonant Coupling using various Magnetic and Negative Refractive Index Materials

G. Boopalan[1], C. K. Subramaniam[1]
[1]School of Electronics Engineering, VIT University, Vellore, Tamil Nadu, India

Non contact charging of electronic equipment from mobiles to electric vehicle has created immense interest among researchers. There are various groups working on both radiative and non-radiative energy transfer. The idea based on strongly coupled magnetic resonances is of interest because of the increased distance of energy transfer. This technology based on resonant magnetic coupling with the ...

Electrochemical Study of Potential Materials for Cochlear Implant Electrode Array

N. Lawand[1], V. Lopez[1,2], P. French[1]
[1]Delft University of Technology, Delft, The Netherlands
[2]Università degli studi di Napoli "Federico II", Naples, Italy

Cochlear Implants (CIs) are implantable prostheses that bypass the non-functional inner ear and directly stimulate the auditory nerve with electric currents, enabling deaf people to experience sound again. The CI electrode array sits inside the cochlea close to the auditory neurons. An ideal stimulation material must have low impedance with maximum charge transfer capacity in the electrochemical ...

Finite Element Analysis of Defibrillation Current Density in Pregnant Women

A. Jeremic[1], E. Khosrowshahli[1]
[1]McMaster University, Hamilton, ON, Canada

Although resuscitation during pregnancy is relatively uncommon and rarely causes death, they have a particularly large impact in terms of the mortality of the unborn child and long-term effects on families and society as whole. In this paper, we present a new 3D finite element model of a pregnant female torso which accounts for presence of amniotic liquid and calculate current density ...