Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Multiphysics Approach to the Modeling of Biological Prosthetic Heart Valves

A. Avanzini[1], D. Battini[1], M. Berardi[1]
[1]Università degli Studi di Brescia, Brescia, Italy

The complex behavior of biological prosthetic heart valves was simulated. A multiphysics computational approach was adopted using different modules of COMSOL Multiphysics: the LiveLink(TM) interface was used to exchange the valve geometry with CAD, Structural Mechanics Module to set loads, boundary conditions and implement anisotropic hyper-elastic constitutive laws for leaflet tissue, PDE to ...

The Microgeometry of Pressure Seals - new

R. P. Ruby[1], G. Kulkarni[2], U. Kanade[1]
[1]Noumenon Multiphysics Pvt. Ltd., Pune, Maharashtra, India
[2]Oneirix Engineering Laboratories Pvt. Ltd., Pune, Maharashtra, India

Seals or gaskets that are compressed between walls of a container are important to many industrial applications. Understanding the performance of such seals requires an understanding of the microscopic geometry of the sealing surfaces, because the fluid seeps around the undulations of such surfaces. This paper presents strong computational evidence that the microgeometry of such surfaces depends ...

MCA 动脉瘤血流动力学分析

刘孟杰 [1], 付芳芳 [2], 李萌 [1]
[1] 郑州大学,郑州,河南,中国
[2] 郑州大学附属省人民医院,郑州,河南,中国

动脉瘤破裂是引起蛛网膜下腔出血的一种主要原因。结合 COMSOL Multiphysics® 灵活的几何建模特性以及强大的流体仿真求解能力,本文分别对两组不同大小关系的 MCA 动脉瘤理论模型进行了仿真建模分析。通过模拟分析,获得了动脉瘤球囊体长度和宽度与动脉瘤基底宽度不同比例条件下的动脉瘤速度、压力、壁面切应力(WSS)等参数的变化规律,分析了几何形态与动力学参数之间的关系。模拟结果显示:1、宽颈动脉瘤,瘤体内部旋流强度较之窄颈动脉瘤更强,中心区流速更低,更有利于形成血栓而且顶点处压力更大,更易破裂。2、增大动脉瘤宽度与基底直径的比值,顶点处 WSS 呈非线性增长,但最大值低于 WSS 安全范围的下限值,破裂危险性依然很高;3、动脉瘤宽度与基底直径不同比例下的最大的 WSS 均是主要集中在动脉瘤与载瘤血管结合处(第一剪应力集中区),对血管壁生物组织力学特性影响严重;WSS ...

Optimization of Flow Distribution in the Feed Sparger of a Steam Drum

P. Goyal[1], A. Dutta[1], and A. K. Ghosh[1]
[1] Reactor Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India

Steam drums of a nuclear power plant separate steam from the steam water mixture and sub cooled incoming feed water returns to the reactor. The entire feed water flow is delivered to the steam drum through the feed water sparger. The feed water sparger is provided with number of inverted ‘j’ type lateral tubes to  distribute the feed water in the drum for proper mixing with the separated ...

Numerical Investigation of Swirl Flow in Curved Tube with Various Curvature Ratio

A. Kadyirov[1]
[1]Research Center for Power Engineering Problems of the Russian Academy of Sciences, Kazan, Russia

The influences of curvature effects and swirl intensities for Non-Newtonian viscous fluid flow in a curved tube have been numerically investigated by using COMSOL Multiphysics®. The twisted tape, which are located directly in front of the curved part, are used as swirl flow generators. The tape is twisted until it reaches an angle of 90 degrees and turns right. Swirling flow, getting into the ...

Understanding the Magnetic Field Penetration in Mesoscopic Superconductors via COMSOL Multiphysics® Software - new

I. G. de Oliveira[1]
[1]Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil

Introduction: One of the main characteristic of the superconductors is its diamagnetic response of applied magnetic fields. The superconductors refuse the penetration of magnetic field into its interior, it is the well know Meissner effect, B=0 into the superconductor sample. However when the applied field reach a determined value, the magnetic field can enter. There are two different ways of ...

Modeling an Ejector for Hydrogen Recirculation in a PEM Fuel Cell

X. Corbella [1], R. Torres [2], J. Grau [2], M. Allué [3],
[1] Escola Universitària d’Enginyeria Tècnica Industrial de Barcelona (Universitat Politècnica de Catalunya), Barcelona, Spain
[2] Fluid Mechanics Department (Escola Universitària d’Enginyeria Tècnica Industrial de Barcelona - Universitat Politècnica de Catalunya), Barcelona, Spain
[3] Institut de Robòtica I Informàtica Industrial (Consejo Superior de Investigaciones Científicas – Universitat Politècnica de Catalunya), Barcelona, Spain

PEM Fuel Cells’ durability and performance can be increased using an ejector based hydrogen recirculation system. In this work, a CFD model has been implemented to simulate the flow within an ejector used to recirculate hydrogen in PEM Fuel Cell systems. The model has been validated experimentally and has been used to design and manufacture an ejector that will be implemented in a fuel cell test ...

Design of an Anisokinetic Probe for Sampling Radioactive Particles from Ducts of Nuclear Facilities

P. Geraldini [1],
[1] Sogin Spa, Rome, Italy

The aim of this study is to design a new concept of shrouded probe that meets the ISO 2889 requirements and it is suitable for small-ducts installation. In order to reduce the construction costs they have been considered standard stainless steel welding fittings manufactured according to ASME/ANSI specifications. In particular, with the numerical simulations, they have been firstly evaluated ...

Pore-Scale Phase Field Model of Two-Phase Flow in Porous Medium

I. Bogdanov, S. Jardel, A. Turki, and A. Kamp
Open & Experimental Centre for Heavy Oil, University of Pau, Pau, France

Pore-scale modeling of multiphase flow through porous media is addressed most frequently to improve our understanding of flow and transport phenomena in such settings. It can be used to obtain macro-scale constitutive equations, to assign multiphase flow properties in large scale models, to predict how these properties may vary with rock type, wettability, etc. The description of a physical ...

Mechanistic Modeling of Non-Spherical Bacterial Attachment on Plant Surface Structures

A. Warning [1], A. K. Datta [1],
[1] Cornell University, Ithaca, NY, USA

The particle tracking model provided a deeper understanding to the experimental results. The model showed good agreement with experimental data for rotation, transport and attachment. In the attachment model, protrusions create low velocity, low shear regions increasing attachment while holes pull cells toward the surface and increase residence time on the surface increasing attachment rate.