Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Acoustic Scattering through a Circular Orifice in Low Mach Number Flow

S. Sack [1], M. Abom [1]
[1] KTH, the Royal Institute of Technology, Stockholm, Sweden

The acoustic scattering through a circular orifice plate in a duct with low Mach number flow (M=0.1) is computed using the Linearized Navier-Stokes physics interface of COMSOL Multiphysics®. The work by Kierkegaard et al. is extended to account for higher order acoustic modes, i.e., behind the cut-on frequency of the first radial duct mode. Orifice flows tend to create a sharp separation zone at ...

CFD Analysis of a Heat Exchanger for an Electric Machine

A. Curci [1], D. Falchi [2], G. Secondo [1],
[1] ABB S.p.A. Italy
[2] Università degli studi di Pavia, Italy

In recent years the thermal behavior of electric machines is an attractive research topic. Due to the complexity of the problem, several approaches that exploit FEM analysis have been developed and presented in literature. In this research a 3D thermo-fluid dynamic simulation of an electric machine equipped with rubber belts directly applied on its shaft has been performed through COMSOL ...

Analysis and Optimization of Dragonfly Wing Using COMSOL Multiphysics® Software

A. Kumar [1], C. Kaur [1], S. S. Padhee [2],
[1] PEC University of Technology, Chandigarh, India
[2] IIT Ropar, Punjab, India

This paper explores the complexities of a dragonfly's flapping wing motion. It includes the literature as well as analytical results using simulations done in COMSOL Multiphysics® software. The study depicts the Fluid-Structure Interaction of the 2D wing (airfoil) with air, governed by Naiver-Stokes equations. The wing follows mathematical functions and is given motion similar to dragonfly's ...

Modeling two-phase flow in strongly heterogeneous porous media

Z. Huang
China University of Petroleum, Research Center for Oil & Gas Flow in Reservoir, Qingdao City, China

Modeling Two-phase flow through strongly heterogeneous porous media is of importance in many disciplines including petroleum industry, hydrology etc. There are, however, still some challenges in numerical simulation of such flow problems especially the flows in fractured porous media and fractured vuggy porous media. The aim of this report is to implement in COMSOL Multiphysics a two-phase fluid ...

Steady and Unsteady Computational Results of Full Two Dimensional Governing Equations for Annular Internal Condensing Flows

R. Naik[1], S. Mitra[1], A. Narain[1], N. Shankar[1]
[1]Michigan Technological University, Houghton, MI, USA

This paper presents steady and unsteady computational results obtained from numerical solutions of the full two-dimensional governing equations for annular internal condensing flows in a channel. This is achieved by tracking the “sharp” interface while solving the flow fields using COMSOL Multiphysics® and MATLAB®. The unsteady wave simulation capability is used to predict heat-transfer rates ...

Numerical Simulation of the Effect of Inlet Design on Thermal Storage Tank Performance Using COMSOL Multiphysics®

W. Yaïci[1], M. Ghorab[1], E. Entchev[1]
[1]Natural Resources Canada, CanmetENERGY, Ottawa, ON, Canada

This study presented the results of 3D unsteady CFD simulations to investigate the influence of adding a flat baffle plate at the entrance during the discharging operation on the flow behaviour, thermal stratification, and performance of a hot water storage tank installed in solar thermal energy systems. The CFD results showed that the plate modified the flow field close to the inlet jet, ...

Mechanistic Modeling of Non-Spherical Bacterial Attachment on Plant Surface Structures

A. Warning [1], A. K. Datta [1],
[1] Cornell University, Ithaca, NY, USA

The particle tracking model provided a deeper understanding to the experimental results. The model showed good agreement with experimental data for rotation, transport and attachment. In the attachment model, protrusions create low velocity, low shear regions increasing attachment while holes pull cells toward the surface and increase residence time on the surface increasing attachment rate.

Scattering of mm-Waves by Turbulent Structures in Magnetically Confined Fusion Plasmas

O. Chellaï [1], S. Alberti [1], I. Furno [1], T. Goodman [1], M. Baquero [1]
[1] Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Suisse

In magnetically confined fusion devices, electron cyclotron resonance heating (80-170 GHz) is characterized by a local RF-power deposition at the electron cyclotron resonance [1]. A mm-wave RF Gaussian beam is launched from a dedicated antenna and propagates through the highly turbulent scrape-off layer (SOL) at the edge of the confined plasma. Turbulence in the SOL is characterized by ...

Calculating the Dissipation in Fluid Dampers with Non-Newtonian Fluid Models

A. Forberger [1],
[1] Gamax Laboratory Solutions Ltd., Budapest, Hungary

Introduction Present paper gives a comparison of the Upperconvected Maxwell (UCM) and the Oldroyd-B model for the calculation of dissipation in high shear-rate cases of viscodampers. When polymeric liquid is considered that part of energy that is irreversible can not be calculated in the typical way. For fluids where the separation into a solvent and a polymer part is not available the ...

Modeling the Acoustic Scattering from Objects Buried in Porous Sediment Using COMSOL Multiphysics® Software

A. Bonomo [1], M. Isakson [1],
[1] Applied Research Laboratories, The University of Texas at Austin, Austin, TX, USA

A frequency-domain finite element (FE) technique for computing the acoustic scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field based on Ref. 1 is extended to poroelastic media and implemented in COMSOL Multiphysics® software. This method allows for the scattering body to consist of any number of acoustic, elastic, and poroelastic domains. The ...