Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling and Simulation of the Consolidation Behaviour of Cemented Paste Backfill

L. Cui [1], M. Fall [1],
[1] University of Ottawa, Ottawa, ON, Canada

In underground mining operations, the mined-out spaces (called stopes) need to be backfilled to maintain the stability of surrounding rock mass and increase the ore recovery. Cemented paste backfill (CPB), a mixture of water, binder, and tailings, has been intensively utilized in underground mining operations to fill the stopes. After preparation, the fresh CPB is transported into stopes via ...

Keyhole Behavior During Spot Laser Welding

V. Bruyere [1], C. Touvrey [2], P. Namy [1]
[1] SIMTEC, Grenoble, France
[2] CEA DAM, Is-sur-Tille, France

The formation of porosities in spot laser welding depends on complex thermo-hydraulic phenomena. To understand and control these mechanisms, the COMSOL Multiphysics® software is used to model both the interaction and cooling stages of an isolated impact made with a Nd:YAG pulsed laser. The model is based on the Phase Field method in order to apprehend the evolution of the liquid-gas interface ...

Multiphysical Modelling of Keyhole Formation during Dissimilar Laser Welding

I. Tomashchuk [1], I. Bendaoud [1], P. Sallamand [1], E. Cicala [1], S. Lafaye [2], M. Almuneau [2],
[1] Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université de Bourgogne – Franche Comté, France
[2] Laser Rhône-Alpes, Le Fontanil (Grenoble), France

Time-dependent multiphysical simulation of pulsed and continuous laser welding of dissimilar metals, based on Moving Mesh (ALE) approach, is proposed. Strong coupling between heat transfer, laminar compressible flow and ALE is used. The model was validated for a case of single material (Ti6Al4V alloy) and then applied for studying of keyhole dynamics and melted zone development in a case of ...

COMSOL Multiphysics® Model of a Solar Dryer - new

E. C. Santos[1], J. H. Sales[1], C. Lima[2]
[1]Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
[2]Instituto Federal da Bahia, Irecê, BA, Brazil

This paper compares the efficiency of a vertical solar dryer vis-à-vis the traditional drying method by the means of a computer simulation. The said program considers geometric, thermal and mechanical effects so as to simulate heat transfer via conduction, convection and radiation. We later ran additional tests with simulated data on the greenhouses(traditional method) so as to compare the ...

Finite Element Analysis of Transient Ballistic-Diffusive Heat Transfer in Two-Dimensional Structures - new

S. Hamian[1], T. Yamada[2], M. Faghri[3], K. Park[1]
[1]University of Utah, Salt Lake City, UT, USA
[2]Lund University, Lund, Sweden
[3]University of Rhode Island, Kingston, RI, USA

For the last two centuries, the conventional Fourier heat conduction equation has been used for modeling a diffusive nature of macroscale heat conduction by considering the energy conservation and Fourier's linear approximation of heat flux. However, it cannot accurately predict heat transport when the length scale is comparable to or smaller than the mean free path of thermal energy carriers or ...

Computational Fluid Dynamics (CFD) Simulation of Multiphase Flow in Biogas Digester

V. S. Kshirsagar[1], P. M. Pawar[1]
[1]SVERI's College of Engineering, Pandharpur, Maharashtra, India

Effective suspension and settling are critical for controlling biomass retention in a biogas digester. This paper developed a Computational Fluid Dynamics (CFD) model to simulate the hydrodynamic characteristics of multiphase flow in biogas digester. This is carried out by using COMSOL Multiphysics® software for understanding the behavior of slurries of different viscosity. This study helps to ...

Modeling of Space-Charge Effects in 3D Thermionic Devices

P. Zilio [1], W. Raja [2], A. Alabastri [3], R. Proietti Zaccaria [2]
[1] Istituto Italiano di Tecnologia, Italy
[2] Istituto Italiano di Tecnologia, Italy
[3] Rice University, USA

The formation of space charge clouds is a well known problem that affects thermionic emitters in regimes of high current emission. Although some analytical models have been presented, suitable for 1D geometries, the modeling of the problem in complex 3D structures remains a challenge due to the mutual coupling between electron trajectories and field they produce. Here we propose a model able to ...

Diffusion and Reaction in Fe-Based Catalyst for Fischer-Tropsch Synthesis Using Micro Kinetic Rate Expressions - new

A. Nanduri[1], P. L. Mills[1]
[1]Department of Chemical & Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

Fischer-Tropsch synthesis (FTS) is a highly exothermic polymerization reaction of syngas (CO+H2) in the presence of Fe/Co/Ru-based catalysts to produce a wide range of paraffins, olefins and oxygenates, often known as syncrude. Multi-Tubular Fixed Bed Reactors (MTFBR) and Slurry Bubble Column Reactors (SBCR) are widely employed for FTS processes. The scale-up of MTFBR is complicated by the ...

Thermal Design of Lithium Sulfur Batteries

R. Purkayastha [1], S. Schleuter [1], G. Minton [1], S. Walus [1], M. Wild [1],
[1] Oxis Energy Ltd, E1 Culham Science Centre, Abingdon, United Kingdom

OXIS Energy Ltd is a pioneer in the research and development of Lithium Sulfur batteries. Scaling up from R&D level coin cells to pouch cells for automotive use, engineering design and thermal management start to become critical. In this study, heat flow at various levels of the cell is investigated. We analyzed different heat flow scenarios of the cell, and found that standard pack arrangements ...

Investigating the Performance of Mechanically Ventilated Double-Skin Facades with Solar Control Devices in the Main Cavity - new

C. G. Galante[1]
[1]Newtecnic Ltd, London, England, UK

The use of ventilated facades may reduce the cooling and heating energy demands of the building. Double-skin facades (DSFs) belong to the wider group of ventilated facades and currently represent one of the most interesting and studied facade systems. The purpose of this study is to investigate the thermal behaviour and performance of a DSF being designed for a real project in the Middle East ...