Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Modeling of Sampling Airborne Radioactive Particles Methods from the Stacks of Nuclear Facilities in Compliance with ISO 2889 - new

P. Geraldini[1]
[1]Sogin Spa, Rome, Italy

The main objective of this study is to verify the compliance of an ongoing nuclear facilities stack design with the ISO 2889 requirements, during normal and off-normal conditions. In particular, with the numerical simulations, they have been identify well-mixed sample locations along the chimney and the compliance with the International Standard requirements as result of stack flow rate and ...

Frequency Analysis of Si-Wafers with Variable Size and Boundary Conditions

E. Gehrig [1],
[1] Hochschule RheinMain, University of Applied Sciences, Wiesbaden Rüsselsheim, Wiesbaden, Germany

Silicon wafers represent key elements in modern microelectronics or photovoltaics. Technological fabrications of wafer sizes with large diameters (e.g. 450 mm) allow an efficient realization for integrated circuits at low cost. However, this material shows a high sensitivity to vibrations that strongly depends on size and the positioning as well as orientation of a wafer in a mounting, realized ...

An Analysis of Spin-Diffusion Dominated Ferrofluid Spin-Up Flows in Uniform Rotating Magnetic Fields

S. Khushrushahi[1], A. Guerrero[2], C. Rinaldi[3], and M. Zahn[1]
[1]Massachusetts Institute of Technology, Cambridge, MA
[2]Univeridad Industrial de Santander, Bucaramanga, Colombia
[3]University of Puerto Rico, Mayaguez, Mayaguez, PR

This work analyzes the spin-diffusion dominated explanation for spin-up bulk flows in ferrofluid filled cylinders, with no free surface, subjected to a uniform rotating magnetic field. COMSOL results are compared to experimental results and analytical results. Simulating ferrofluid spin-up flows have many subtleties, especially when using a single domain region to model the ferrofluid ...

Numerical Optimization Strategy for Determining 3D Flow Fields in Microfluidics

A. Eden [1], M. Sigurdson [1], C. D. Meinhart [1], I. Mezic [1],
[1] University of California - Santa Barbara, Santa Barbara, CA, USA

Measurement of three dimensional, three component velocity fields is central to the development of effective micromixers for bioassays and lab-on-chip mixing applications. We present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations. An optimization algorithm is applied to a ...

Fluid-Structure Interaction Modeling for an Optimized Design of a Piezoelectric Energy Harvesting MEMS Generator

I. Kuehne[1], A. van der Linden[2], J. Seidel[1], M. Schreiter[1], L. Fromme[2], and A. Frey[1]
[1]Siemens AG, Corporate Research & Technologies, Munich, Germany
[2]Comsol Multiphysics GmbH, Göttingen, Germany

This paper reports the design of a piezoelectric energy harvesting micro generator for an energy autonomous tire pressure monitoring wireless sensor node. For our design we use a piezoelectric MEMS generator approach without additional mass. The intrinsic mass of the cantilever is in the microgram region and the resulting acceleration forces are very small. The generator has a triangular ...

A Flow Induced Vertical Thermoelectric Generator and its Simulation using COMSOL Multiphysics

E. Topal
Micro and Nanotechnology Program
Middle East Technical University
Ankara, Turkey

In this study, a new thermoelectric harvester with fluid flow for increased performance is introduced. The thermoelectric generator is 3D vertical configuration with p- and n-doped Silicon thermolegs. There is water flow between channels integrated through the thermoelectric columns, providing forced convection on the heat flow path. Our thermoelectric generator design can be used for energy ...

Study of AC Electrothermal Phenomena Models

S. Loire, and P. Kauffmann
University of California
Santa Barbara, CA

Recently, electrokinetic flows have raised the interest of the scientific community. Driving flow with an electric field leads to promising applications for mixing, concentration, pumping application in lab on chips. However, current models are still inaccurate and don\'t fit the measures. The simple decoupled model developed by Ramos et al does not predict velocities for all parameters. ...

Keyhole Behavior During Spot Laser Welding

V. Bruyere [1], C. Touvrey [2], P. Namy [1]
[1] SIMTEC, Grenoble, France
[2] CEA DAM, Is-sur-Tille, France

The formation of porosities in spot laser welding depends on complex thermo-hydraulic phenomena. To understand and control these mechanisms, the COMSOL Multiphysics® software is used to model both the interaction and cooling stages of an isolated impact made with a Nd:YAG pulsed laser. The model is based on the Phase Field method in order to apprehend the evolution of the liquid-gas interface ...

A COMSOL-based 2D Self-Consistent Microwave Plasma Model

A. Berthelot [1], A. Bogaerts [1],
[1] PLASMANT Group, University of Antwerp, Belgium

In this paper, we present a 2D axisymmetric self-consistent plasma fluid model for microwave plasmas operating in argon. The model was developed using COMSOL Multiphysics and its Plasma Module. Plasma, flow, heat and electromagnetic equations solved self-consistently. The effect of the pressure on the plasma parameters is studied over a wide range of pressures going from 10 mbar to ...

Iterative Learning Control for Spatio-Temporal Repetitive Processes

D. Kowalów [1], M. Patan [1]
[1] Institute of Control & Computation Engineering, Zielona Góra, Poland

Recently, due to the dynamically increasing complexity of modern systems, a strong necessity appears for more systematic approaches to high quality control and process monitoring. Requirements imposed by process control in the area of spatio-temporal physical systems also called distributed parameter systems (DPSs) are associated with using very accurate models in which spatial dynamics cannot ...