Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.


吴强 [1], 潘崇佩 [1], 张琦 [1],
[1] 南开大学,天津,中国

“极化激元”是固体物理学中的重要概念,泛指各种极性元激发与光子的耦合。其中,声子极化激元是指晶格振动的声子与电磁场中的光子相互耦合的一种极化激元波。使用飞秒光在铁电晶体铌酸锂中通过光学非线性效应可产生声子极化激元,其频率位于太赫兹波段,在晶格的振动弛豫、太赫兹光谱、与介观微结构作用等领域已有广泛应用。 声子极化激元涉及电磁场和晶格场的耦合问题,其形式满足黄昆方程。我们使用 COMSOL Multiphysics® 的多物理场(偏微分方程组以及射频模块)模拟了块状铌酸锂晶体中产生声子极化激元波的产生和传输。 铌酸锂晶体作为太赫兹应用的集成化平台,可通过在平板波导上引入微结构实现对太赫兹波的调控。诸多手段中,太赫兹天线作为电磁场的传播场与局域场转换的关键部件,对太赫兹通信和太赫兹光谱等领域都有不可替代的作用。基于这一点,我们设计了一种尖端相对的棒状天线结构,使用 COMSOL ...

Analysis of Super Imaging Properties of Spherical Geodesic Waveguide Using COMSOL Multiphysics

D. Grabovi?ki?[1], J.C. González[1], P. Benítez[1], J.C. Miñano[1]
[1]Cedint Universidad Politécnica de Madrid, Madrid, Spain

Negative Refractive Lens (NRL) has shown that an optical system can produce images with details below the classic Abbe diffraction limit. This optical system transmits the electromagnetic fields, emitted by an object plane, towards an image plane producing the same field distribution in both planes. Recently, two devices with positive refraction, the Maxwell Fish Eye lens (MFE) (Leonhardt et al. ...

Modeling of III-Nitride Quantum Wells with Arbitrary Crystallographic Orientation for Nitride-Based Photonics

M. Kisin, R. Brown, and H. El-Ghoroury

Ostendo Technologies, Inc., Carlsbad, CA, USA

A program for self-consistent modeling of electron-hole energy spectrum and space-charge distribution in III-nitride based quantum well (QW) structures has been developed. The model takes into consideration full 6-band description of the valence band states, nonparabolicity of the electron spectrum, quantum confinement of electrons and holes, strain induced modifications of the band structure, ...

Dual Phononic And Photonic Band Gaps In A Periodic Array Of Pillars Deposited On A Membrane

Y. Pennec, Y. El Hassouani, C. Li, B.D. Rouhani, E.H. El Boudouti, H. Larabi, and A. Akjouj
Institut d’Electronique, de Microélectronique et de Nanotechnologie, Université de Lille, Villeneuve d’Ascq, France

Phononic crystals are a class of materials that exhibit periodic variations in their density and elastic properties. Such crystals modify the propagation of acoustic waves and prohibit the propagation of sound for frequencies within the band gap. We discuss the simultaneous existence of phononic and photonic band gaps in a periodic array of silicon pillars deposited on a homogeneous SiO2 ...

Calculating the Haze Parameter of Textured Transparent Conductive Oxides

A. ?ampa[1], M. Topi?[1]
[1]University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia

In thin-film solar cells (a-Si:H, µc-Si:H, CIGS, etc.) scattering of light is very important to increase absorption of light in the active layers of solar cells. Today the most efficient thin-film solar cells are designed or deposited on random textured transparent conductive oxides (TCO). In order to study the scattering properties of the surface texture we have developed a numerical model in ...

Metamaterial Based Patch Antenna with Broad Bandwidth Designed by COMSOL Multiphysics® Software

李学识 [1], 郑李娟 [1],
[1] 广东工业大学,广州,中国

A patch antenna based on metamaterials of composite split-ring-resonators (CSRRs) and strip gaps is designed with COMSOL Multiphysics® software. The antenna is constructed by using CSRR structures in forms of circular rings on the patch and employing strip gaps on the ground plane. The signal is fed by a common microstrip line that connects the patch and the input port. The antenna is based on a ...

Simulation of Photonic Crystals Particle Filling by Electrospray

A. Coll, V. Di Virgilio, S. Bermejo, and L. Castañer
Universitat Politècnica de Catalunya, Barcelona, Spain

Photonic crystals are widely used in optical applications as waveguides and band filters. Filling the periodic structural material of photonic crystals with other materials is very useful in order to change the optical properties of the devices. In this paper electrostatic COMSOL simulations describing an electrospray deposition of particles in macroporous structures are performed.

Modelling Ultra-short Pulse Laser Ablation of Dielectric Materials Using multiple Rate Equations - new

P. Boerner[1], K. Wegener[1]
[1]Institute of Machine Tools and Manufacturing, ETH Zurich, Zurich, Switzerland

Ultrafast lasers are widely applied in micromachining, material science and physics. In industry, picosecond lasers are becoming more and more established. For pulse lengths shorter than the electron-phonon coupling time, heat affected zones are negligible. Thermally sensitive materials can be processed using ultrashort pulse laser radiation. Multi-component materials and poorly absorbing ...

Modeling Plasmonic Structure Integrated Single-Photon Detectors to Maximize Polarization Contrast

M. Csete [1], A. Szenes [1], G. Szekeres [1], B. Banhelyi [2], T. Csendes [2], G. Szabo [1],
[1] Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
[2] Institute of Informatics, University of Szeged, Szeged, Hungary

Introduction: Single-photon detectors capable of ensuring high fidelity read-out of quantum information delivered via photons of specific polarization are crucial in QIP [1]. Our previous studies have shown that different types of one dimensional plasmonic structures enhance the absorptance of p-polarized light [2, 3]. The purpose of present study was to optimize four different types of ...

Heterodimensional Charge-Carrier Confinement in Sub-Monolayer InAs in GaAs - new

S. Harrison[1], M. Young[1], M. Hayne[1], P. D. Hodgson[1], R. J. Young[1], A. Strittmatter[2], A. Lenz[2], U. W. Pohl[2], D. Bimberg[2]
[1]Department of Physics, Lancaster University, Lancaster, UK
[2]Institut für Festkörperphysik, Berlin, Germany

Low-dimensional semiconductor nanostructures, in which charge carriers are confined in a number of spatial dimensions, are the focus of much solid-state physics research, offering superior optical and electronic properties over their bulk counterparts. Both two-dimensional (2D) and zero-dimensional (0D) structures have seen wide-ranging applications in laser diodes, solar cells and LEDs to name ...